33
PUBLICATIONS
2
BOOK CHAPTERS
2630
CITATIONS
12
CONFERENCES
Das, S.*; Yang, D.; Conley, E. T.; Gates, B. C.*; 2-Propanol Dehydration on the Nodes of the Metal–Organic Framework UiO-66: Distinguishing Catalytic Sites for Formation of Propene and Di-isopropyl Ether. ACS Catal. 2023, 13, XXX, 14173–14188.
https://doi.org/10.1021/acscatal.3c03500
Das, S.; Anjum, U.; Lim, K. H.; He, Q.; Hoffman, A. S.; Bare, S. R.; Kozlov, S. M.; Gates, B. C.*; Kawi, S.*, Genesis of Active Pt/CeO2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. Small 2023, 19 (26), 2207272. https://doi.org/10.1002/smll.202207272
Qi, L.; Das, S.; Zhang, Y.; Nozik, D.; Gates, B. C.; Bell, A. T.*, Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. Journal of the American Chemical Society 2023, 145 (5), 2911-2929. https://doi.org/10.1021/jacs.2c11075
Liu, L.; Dai, J.; Das, S.; Wang, Y.; Yu, H.; Xi, S.; Zhang, Z.*; Tu, X.*, Plasma-Catalytic CO2 Reforming of Toluene over Hydrotalcite-Derived NiFe/(Mg, Al)Ox Catalysts. JACS Au 2023, 3 (3), 785-800. https://doi.org/10.1021/jacsau.2c00603
Das, S.; Lim, K. H.; Gani, T. Z. H.; Aksari, S.; Kawi, S.*, Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming. Applied Catalysis B: Environmental 2023, 323, 122141. doi.org/10.1016/j.apcatb.2022.122141
Lim, K. H.; Yue, Y.; Bella; Gao, X.; Zhang, T.; Hu, F.; Das, S.; Kawi, S.*, Sustainable Hydrogen and Ammonia Technologies with Nonthermal Plasma Catalysis: Mechanistic Insights and Technoeconomic Analysis. ACS Sustainable Chemistry & Engineering 2023, 11 (13), 4903-4933. https://doi.org/10.1021/acssuschemeng.2c06515
Pati, S.; Das, S.; Dewangan, N.; Jangam, A.; Kawi, S.*, Facile integration of core–shell catalyst and Pd-Ag membrane for hydrogen production from low-temperature dry reforming of methane. Fuel 2023, 333, 126433. https://doi.org/10.1016/j.fuel.2022.126433
Liu, L.; Das, S.; Zhang, Z.; Kawi, S.,* Nonoxidative Coupling of Methane over Ceria-Supported Single-Atom Pt Catalysts in DBD Plasma. ACS Applied Materials & Interfaces 2022, 14 (4), 5363-5375. https://doi.org/10.1021/acsami.1c21550
Das, S.; Jangam, A.; Jayaprakash, S.; Xi, S.; Hidajat, K.; Tomishige, K.; Kawi, S.*, Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study. Applied Catalysis B: Environmental 2021, 290, 119998. https://doi.org/10.1016/j.apcatb.2021.119998
Jayaprakash, S.; Dewangan, N.; Jangam, A.; Das, S.; Kawi, S.*, LDH-derived Ni–MgO–Al2O3 catalysts for hydrogen-rich syngas production via steam reforming of biomass tar model: Effect of catalyst synthesis methods. International Journal of Hydrogen Energy 2021, 46 (35), 18338-18352. https://doi.org/10.1016/j.ijhydene.2021.03.013
Ashok, J.; Das, S.; Dewangan, N.; Kawi, S.*, Steam reforming of surrogate diesel model over hydrotalcite-derived MO-CaO-Al2O3 (M = Ni & Co) catalysts for SOFC applications. Fuel 2021, 291, 120194. https://doi.org/10.1016/j.fuel.2021.120194
Jangam, A.; Das, S.; Pati, S.; Kawi, S.*, Catalytic reforming of tar model compound over La1-xSrx-Co0.5Ti0.5O3-δ dual perovskite catalysts: Resistance to sulfide and chloride compounds. Applied Catalysis A: General 2021, 613, 118013. https://doi.org/10.1016/j.apcata.2021.118013
Wai, M. H.; Ashok, J.; Dewangan, N.; Das, S.; Xi, S.; Borgna, A.; Kawi, S.*, Influence of Surface Formate Species on Methane Selectivity for Carbon Dioxide Methanation over Nickel Hydroxyapatite Catalyst. ChemCatChem 2020, 12 (24), 6410-6419. https://doi.org/10.1002/cctc.202001300
Jangam, A.; Das, S.; Dewangan, N.; Hongmanorom, P.; Hui, W. M.; Kawi, S.*, Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catalysis Today 2020, 358, 3-29. https://doi.org/10.1016/j.cattod.2019.08.049
Das, S.; Bhattar, S.; Liu, L.; Wang, Z.; Xi, S.; Spivey, J. J.*; Kawi, S.*, Effect of Partial Fe Substitution in La0.9Sr0.1NiO3 Perovskite-Derived Catalysts on the Reaction Mechanism of Methane Dry Reforming. ACS Catalysis 2020, 10 (21), 12466-12486. https://doi.org/10.1021/acscatal.0c01229
Wang, Z.; Chen, T.; Dewangan, N.; Li, Z.; Das, S.; Pati, S.; Li, Z.; Lin, J. Y. S*.; Kawi, S.*, Catalytic mixed conducting ceramic membrane reactors for methane conversion. Reaction Chemistry & Engineering 2020, 5 (10), 1868-1891. https://doi.org/10.1039/D0RE00177E
Das, S.; Jangam, A.; Xi, S.; Borgna, A.; Hidajat, K.; Kawi, S.*, Highly Dispersed Ni/Silica by Carbonization–Calcination of a Chelated Precursor for Coke-Free Dry Reforming of Methane. ACS Applied Energy Materials 2020, 3 (8), 7719-7735. https://doi.org/10.1021/acsaem.0c01122
Hongmanorom, P.; Ashok, J.; Das, S.; Dewangan, N.; Bian, Z.; Mitchell, G.; Xi, S.; Borgna, A.; Kawi, S.*, Zr–Ce-incorporated Ni/SBA-15 catalyst for high-temperature water gas shift reaction: Methane suppression by incorporated Zr and Ce. Journal of Catalysis 2020, 387, 47-61. https://doi.org/10.1016/j.jcat.2019.11.042
Das, S.; Pérez-Ramírez, J.*; Gong, J.*; Dewangan, N.; Hidajat, K.; Gates, B. C.*; Kawi, S.*, Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews 2020, 49 (10), 2937-3004. https://doi.org/10.1039/C9CS00713J
Liu, L.; Das, S.; Chen, T.; Dewangan, N.; Ashok, J.; Xi, S.; Borgna, A.; Li, Z.; Kawi, S.*, Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma. Applied Catalysis B: Environmental 2020, 265, 118573. https://doi.org/10.1016/j.apcatb.2019.118573
Ashok, J.; Dewangan, N.; Das, S.; Hongmanorom, P.; Wai, M. H.; Tomishige, K.; Kawi, S.*, Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology 2020, 199, 106252. https://doi.org/10.1016/j.fuproc.2019.106252
Liu, L.; Zhang, Z.; Das, S.; Xi, S.; Kawi, S.*, LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: Effect of calcination temperature. Energy Conversion and Management 2020, 206, 112475. https://doi.org/10.1016/j.enconman.2020.112475
Dewangan, N.; Ashok, J.; Sethia, M.; Das, S.; Pati, S.; Kus, H.; Kawi, S.*, Cobalt-Based Catalyst Supported on Different Morphologies of Alumina for Non-oxidative Propane Dehydrogenation: Effect of Metal Support Interaction and Lewis Acidic Sites. ChemCatChem 2019, 11 (19), 4923-4934. https://doi.org/10.1002/cctc.201900924
Liu, L.; Zhang, Z.; Das, S.; Kawi, S.*, Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: A review. Applied Catalysis B: Environmental 2019, 250, 250-272. https://doi.org/10.1016/j.apcatb.2019.03.039
Chen, T.; Wang, Z.; Das, S.; Liu, L.; Li, Y.; Kawi, S.*; Lin, Y. S.*, A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature. Journal of Membrane Science 2019, 581, 72-81. https://doi.org/10.1016/j.memsci.2019.03.021
Das, S.; Jangam, A.; Du, Y.; Hidajat, K.; Kawi, S.*, Highly dispersed nickel catalysts via a facile pyrolysis generated protective carbon layer. Chemical Communications 2019, 55 (43), 6074-6077. https://doi.org/10.1039/C9CC00783K
Ashok, J.; Das, S.; Dewangan, N.; Kawi, S.*, H2S and NOx tolerance capability of CeO2 doped La1−xCexCo0.5Ti0.5O3−δ perovskites for steam reforming of biomass tar model reaction. Energy Conversion and Management: X 2019, 1, 100003. https://doi.org/10.1016/j.ecmx.2019.100003
Ashok, J.; Das, S.; Yeo, T. Y.; Dewangan, N.; Kawi, S.*, Incinerator bottom ash derived from municipal solid waste as a potential catalytic support for biomass tar reforming. Waste Management 2018, 82, 249-257. https://doi.org/10.1016/j.wasman.2018.10.035
Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M. H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S.*, Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental 2018, 230, 220-236. https://doi.org/10.1016/j.apcatb.2018.02.041
Wang, Z.; Dewangan, N.; Das, S.; Wai, M. H.; Kawi, S.*, High oxygen permeable and CO2-tolerant SrCoxFe0.9-xNb0.1O3-δ (x = 0.1–0.8) perovskite membranes: Behavior and mechanism. Separation and Purification Technology 2018, 201, 30-40. https://doi.org/10.1016/j.seppur.2018.02.046
Li, Z.; Das, S.; Hongmanorom, P.; Dewangan, N.; Wai, M. H.; Kawi, S.*, Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology 2018, 8 (11), 2763-2778. https://doi.org/10.1039/C8CY00622A
Bian, Z.; Das, S.; Wai, M. H.; Hongmanorom, P.; Kawi, S.*, A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18 (22), 3117-3134. https://doi.org/10.1002/cphc.201700529