[16] D. Perales, Z. Yang.
Asymptotic root distribution of polynomials under repeated polar differentiation.
[15] D. Muñoz George, D. Perales.
Second order free cumulants: product, commutator, and anti-commutator.
[14] A. Martinez-Finkelshtein, R. Morales, D. Perales.
Zeros of orthogonal little q-Jacobi polynomials: interlacing and monotonicity.
To appear in Proceedings of the American Mathematical Society. arXiv:2506.05492
[13] O. Arizmendi, D. Perales, J. Vazquez-Becerra.
Finite Free Convolution: Infinitesimal Distributions.
[12] J. Campbell, R. Morales, D. Perales.
Even Hypergeometric Polynomials and Finite Free Commutators.
To appear in Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). arXiv:2502.00254
[11] O. Arizmendi, K. Fujie, D. Perales, Y. Ueda.
S-transform in Finite Free Probability.
[10] A. Martinez-Finkelshtein, R. Morales, D. Perales.
Constructive Approximation (2025), arXiv:2404.11479
[9] A. Martinez-Finkelshtein, R. Morales, D. Perales.
Real roots of hypergeometric polynomials via finite free convolution.
International Mathematics Research Notices, Vol 2024, Issue 16, pgs 11642–11687 August (2024). arXiv:2309.10970
Finite Free Cumulants: Multiplicative Convolutions, Genus Expansion and Infinitesimal Distributions.
Transactions of the American Mathematical Society, 76, 06: 4383-4420, (2023). arXiv:2108.08489.
[7] A. Celestino, K. Ebrahimi-Fard, A. Nica, D. Perales, L. Witzman.
Advances in Applied Mathematics, 145, 102481 (2023). arXiv:2106.16072.
[6] D. Perales.
On the anti-commutator of two free random variables.
Indiana University Mathematical Journal, 72:1867–1908, (2023). arXiv:2101.09444.
[5] D. Perales, P.L. Tseng.
On operator-valued infinitesimal Boolean and monotone independence.
Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol 24(03), article 2150019 (2021). arXiv:2010.15286.
[4] A. Celestino, K. Ebrahimi-Fard, F. Patras, D. Perales.
Cumulant-cumulant relations in free probability theory from Magnus’ expansion.
Foundations of Computational Mathematics (2021). arXiv:2004.10152.
[3] A. Celestino, K. Ebrahimi-Fard, D. Perales.
Relations between infinitesimal non-commutative cumulants.
Documenta Mathematica 26:1145-1185, (2021). arXiv:1912.04931.
[2] O. Arizmendi, D. Perales.
A Berry–Esseen Type Theorem for Finite Free Convolution.
In XIII Symposium on Probability and Stochastic Processes, Birkhäuser, Cham 67-76, (2020). arXiv:2310.1548
[1] O. Arizmendi, D. Perales
Cumulants for finite free convolution.
Journal of Combinatorial Theory, Series A, 155, 244-266, (2018). arXiv:1611.06598