All of my publications are also available on arXiv, and on my google scholar profile.

[22] Quantum simulation with fully coherent dipole--dipole-interactions mediated by three-dimensional subwavelength atomic arrays; Katharina Brechtelsbauer, DM, arXiv:2012.12771.

[21] Topological two-dimensional Floquet lattice on a single superconducting qubit; DM & Adam Smith, arXiv:2012.01459.

[20] Generation of Photonic Matrix Product States with a Rydberg-Blockaded Atomic Array; Zhi-Yuan Wei, DM, Alejandro Gonzalez-Tudela, Ignacio Cirac, arXiv:2011.03919.

[19] Time crystallinity and finite-size effects in clean Floquet systems; Andrea Pizzi, DM, Giuseppe De Tomasi, Johannes Knolle & Andreas Nunnenkamp; Phys. Rev. B 102, 214207 (2020), arXiv:2009.13527.

[18] Optimal two-photon excitation of bound states in non-Markovian waveguide QED; Rahul Trivedi, DM, Shanhui Fan, Jelena Vuckovic; arXiv:2009.08602.

[17] Seasonal epidemic spreading on small-world networks: Biennial outbreaks and classical discrete time crystals; DM, A Pizzi, A Nunnenkamp, J Knolle; arxiv:2007.00979.

[16] Weakly invasive metrology: quantum advantage and physical implementations; M Perarnau-Llobet, DM, JI Cirac, arXiv:2006.12114.

[15] Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits, J-C Besse, K Reuer et al, Nature Communications 11, 4877 (2020), arXiv:2005.07060.

[14] Stroboscopic quantum optomechanics, M Brunelli, DM, A Schliesser, A Nunnenkamp, Phys. Rev. Research 2, 023241 (2020), arXiv:2003.04361.

[13] Nonreciprocal transport based on cavity Floquet modes in optomechanics, L Mercier de Lépinay, CF Ockeloen-Korppi, DM, MA Sillanpää, Phys. Rev. Lett. 125, 023603 (2020), arXiv:1912.10541.

[12] Nondestructive photon counting in waveguide QED, DM, JI Cirac, Phys. Rev. Research 2, 033091 (2020), arXiv:1906.12296.

[11] Conditional dynamics of optomechanical two-tone backaction-evading measurements; M Brunelli, DM, A Nunnenkamp; Phys. Rev. Lett. 123, 093602 (2019), arXiv:1903.05901.

[10] Topological magnon amplification; DM, J Knolle, A Nunnenkamp, Nature Communications, 10, 3937 (2019), arXiv:1901.02282.

[9] Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements; I Shomroni et al; Phys. Rev. X 9, 041022 (2019), arXiv:1812.11022.

[8] Optical Backaction-Evading Measurement of a Mechanical Oscillator; I Shomroni, L Qiu, DM, A Nunnenkamp, TJ Kippenberg, Nature Communications 10, 2086 (2019), arXiv:1809.01007.

[7] Floquet dynamics in quantum measurement of mechanical motion; L Qiu, I Shomroni, MA Ioannou, DM, A Nunnenkamp, TJ Kippenberg, Phys. Rev. A 100, 053852 (2019) arXiv:1805.12364.

[6] Current rectification in double quantum dot through fermionic reservoir engineering; DM and A Nunnenkamp, Phys. Rev. B 97, 165308 (2018), arXiv:1712.07441 .

[5] Quantum noise spectra for periodically-driven cavity optomechanics; EB Aranas, MJ Akram, DM, TS Monteiro, Phys. Rev. A 96, 063836 (2017), arXiv:1710.08847.

[4] Quantum-limited directional amplifiers with optomechanics; DM, LD Toth, NR Bernier, AK Feofanov, TJ Kippenberg and A Nunnenkamp, Phys. Rev. Lett. 120, 023601 (2018), arXiv:1705.00436.

[3] Nonreciprocal reconfigurable microwave optomechanical circuit; NR Bernier, LD Toth, A Koottandavida, M Ioannou, DM, A Nunnenkamp, AK Feofanov, TJ Kippenberg, Nature Communications 8, 604 (2017), arXiv:1612.08223.

[2] Optomechanical dual-beam backaction-evading measurement beyond the rotating-wave approximation; DM and A Nunnenkamp, Phys. Rev. A 94, 053820 (2016), arXiv:1610.00154.

[1] Floquet approach to bichromatically driven cavity optomechanical systems; DM and A Nunnenkamp, Phys. Rev. A 94, 023803 (2016), arXiv:1605.04749.