All of my publications are also available on arXiv, and my google scholar profile.

[27] Supersymmetric Free Fermions and Bosons: Locality, Symmetry and Topology; Zongping Gong, Robert H. Jonsson, DM, arXiv:2112.07527

[26] Generation of photonic tensor network states with Circuit QED, Zhi-Yuan Wei, J. Ignacio Cirac, DM, arXiv:2109.06781.

[25] Atomic waveguide QED with atomic dimers, David Castells-Graells, DM, Cosimo C. Rusconi, J. Ignacio Cirac, arXiv:2107.10813.

[24] Convergence of numerical approximations to non-Markovian bosonic gaussian environments, Rahul Trivedi, DM, Ignacio Cirac, Phys. Rev. Lett. 127, 250404 (2021), arXiv:2107.07196.

[23] Sequential generation of projected entangled-pair states; Zhi-Yuan Wei, DM, Ignacio Cirac, Phys. Rev. Lett. 128, 010607 (2022), arXiv:2107.05873.

[22] Quantum simulation with fully coherent dipole--dipole-interactions mediated by three-dimensional subwavelength atomic arrays; Katharina Brechtelsbauer, DM, Phys. Rev. A 104, 013701 (2021), arXiv:2012.12771.

[21] Topological two-dimensional Floquet lattice on a single superconducting qubit; DM & Adam Smith, Phys. Rev. Lett. 126, 163602 (2021), arXiv:2012.01459.

[20] Generation of Photonic Matrix Product States with a Rydberg-Blockaded Atomic Array; Zhi-Yuan Wei, DM, Alejandro Gonzalez-Tudela, Ignacio Cirac, Phys. Rev. Research 3, 023021 (2021), arXiv:2011.03919.

[19] Time crystallinity and finite-size effects in clean Floquet systems; Andrea Pizzi, DM, Giuseppe De Tomasi, Johannes Knolle & Andreas Nunnenkamp, Phys. Rev. B 102, 214207 (2020), arXiv:2009.13527.

[18] Optimal two-photon excitation of bound states in non-Markovian waveguide QED; Rahul Trivedi, DM, Shanhui Fan, Jelena Vuckovic, Phys. Rev. A 104, 013705 (2021), arXiv:2009.08602.

[17] Seasonal epidemic spreading on small-world networks: Biennial outbreaks and classical discrete time crystals; DM, A Pizzi, A Nunnenkamp, J Knolle, Phys. Rev. Research 3, 013124 (2021), arxiv:2007.00979.

[16] Weakly invasive metrology: quantum advantage and physical implementations; M Perarnau-Llobet, DM, JI Cirac, Quantum 5, 446, arXiv:2006.12114.

[15] Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits, J-C Besse, K Reuer et al, Nature Communications 11, 4877 (2020), arXiv:2005.07060.

[14] Stroboscopic quantum optomechanics, M Brunelli, DM, A Schliesser, A Nunnenkamp, Phys. Rev. Res. 2, 023241 (2020), arXiv:2003.04361.

[13] Nonreciprocal transport based on cavity Floquet modes in optomechanics, L Mercier de Lépinay, CF Ockeloen-Korppi, DM, MA Sillanpää, Phys. Rev. Lett. 125, 023603 (2020), arXiv:1912.10541.

[12] Nondestructive photon counting in waveguide QED, DM, JI Cirac, Phys. Rev. Research 2, 033091 (2020), arXiv:1906.12296.

[11] Conditional dynamics of optomechanical two-tone backaction-evading measurements; M Brunelli, DM, A Nunnenkamp, Phys. Rev. Lett. 123, 093602 (2019), arXiv:1903.05901.

[10] Topological magnon amplification; DM, J Knolle, A Nunnenkamp, Nature Communications, 10, 3937 (2019), arXiv:1901.02282.

[9] Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements; I Shomroni et al, Phys. Rev. X 9, 041022 (2019), arXiv:1812.11022.

[8] Optical Backaction-Evading Measurement of a Mechanical Oscillator; I Shomroni, L Qiu, DM, A Nunnenkamp, TJ Kippenberg, Nature Communications 10, 2086 (2019), arXiv:1809.01007.

[7] Floquet dynamics in quantum measurement of mechanical motion; L Qiu, I Shomroni, MA Ioannou, DM, A Nunnenkamp, TJ Kippenberg, Phys. Rev. A 100, 053852 (2019) arXiv:1805.12364.

[6] Current rectification in double quantum dot through fermionic reservoir engineering; DM and A Nunnenkamp, Phys. Rev. B 97, 165308 (2018), arXiv:1712.07441 .

[5] Quantum noise spectra for periodically-driven cavity optomechanics; EB Aranas, MJ Akram, DM, TS Monteiro, Phys. Rev. A 96, 063836 (2017), arXiv:1710.08847.

[4] Quantum-limited directional amplifiers with optomechanics; DM, LD Toth, NR Bernier, AK Feofanov, TJ Kippenberg and A Nunnenkamp, Phys. Rev. Lett. 120, 023601 (2018), arXiv:1705.00436.

[3] Nonreciprocal reconfigurable microwave optomechanical circuit; NR Bernier, LD Toth, A Koottandavida, M Ioannou, DM, A Nunnenkamp, AK Feofanov, TJ Kippenberg, Nature Communications 8, 604 (2017), arXiv:1612.08223.

[2] Optomechanical dual-beam backaction-evading measurement beyond the rotating-wave approximation; DM and A Nunnenkamp, Phys. Rev. A 94, 053820 (2016), arXiv:1610.00154.

[1] Floquet approach to bichromatically driven cavity optomechanical systems; DM and A Nunnenkamp, Phys. Rev. A 94, 023803 (2016), arXiv:1605.04749.