Introduction:
Lectures:
statistics for ML and exploratory data analysis (EDA),
Examples:
notebooks and EDA,
data structures in R,
diabetes EDA (python)
Numerous Cross-Validation examples in R and Python--please consult the README for details.
Regression:
Lectures:
other regression methods,
Examples:
Photosynthesis data - simple linear regression
Concrete data - comparison of simple and multiple regression.
LIDAR data - nonlinear SVM regression
Classification:
Lectures:
Examples:
k-nn classifier for iris data
SVM classifier for iris data
CART:
Lectures:
Examples:
coming soon...
Neural networks
Lectures:
CNNs (coming soon...)
Examples:
Simple NN for rule of squares.
NN classifier for wine fraud data.
Lectures:
Examples:
k-means on Gaussian blobs.
Basic filters (KF)
Nonlinear filters (EKF)--see Advanced Course
Ensemble filters (EnKF)--see Advanced Course