Search this site
Embedded Files
Skip to main content
Skip to navigation
CS 159 Spring 2019
Home
Lectures
Presentation Guidelines
Project Guidelines
References
Code & Data
CS 159 Spring 2019
Home
Lectures
Presentation Guidelines
Project Guidelines
References
Code & Data
More
Home
Lectures
Presentation Guidelines
Project Guidelines
References
Code & Data
Lecture schedule
Lecture 1 (4/2/2019): Introduction & Course Overview
Lecture 2 (4/4/2019): Classical Latent Variable Models
Lecture 3 (4/9/2019): Explicit Latent Variable Models w/ Variational Inference
Lecture 4 (4/11/2019): Auto-regressive Models
Lecture 5 (4/16/2019): Generative Adversarial Networks
Lecture 6 (4/18/2019): Flow-based Models & Normalizing Flows
Lecture 7 (4/23/2019): Discrete Latent Variable Models
Lecture 8 (4/25/2019): Sequential Latent Variable Models
Lecture 9 (4/30/2019): Energy-Based Models
Lecture 10 (5/2/2019): Neural Autoregressive Networks
Lecture 11 (5/7/2019): Deep Structured Prediction w/ Message Passing
Lecture 12 (5/9/2019): Adversarial Autoencoders
Lecture 13 (5/14/2019): Language Models, Transformers
Lecture 14 (5/16/2019): Generative Model Evaluation
Lecture 15 (5/21/2019): Disentangled Representation Learning
Lecture 16 (5/23/2018): Conditional Generation
Lecture 17 (5/28/2019): W-GANs + Spectral Normalization
Lecture 18 (5/30/2019): Generative Models & Reinforcement Learning
Lecture 19 (6/4/2019): Causal Models
Lecture 20 (6/6/2019): Poster Session
(Note: this schedule is subject to change)
Lecture 1 (4/2/2019): Introduction & Course Overview
Presented by Yisong & Joe
Administrivia
Introduction to Probabilistic Modeling & Deep Learning
Slides Part 1
Slides Part 2
Lecture 2 (4/4/2019): Classical Latent Variable Models
PCA, Gaussian Mixture Models, EM Algorithm, Linear Factor Models, Variational Inference
Presented by Jeremy & Joe
Slides
and
notes on the EM algorithm
.
Lecture 3 (4/9/2019): Explicit Latent Variable Models w/ Variational Inference
Lectured by Joey Hong & Rohan Choudhury
Mentored by Joe
Slides
,
Tutorial
Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995).
The Helmholtz Machine
.
Kingma, D. P., & Welling, M. (2014).
Auto-encoding variational bayes
.
See also:
Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995).
The "wake-sleep" algorithm for unsupervised neural networks
.
Rezende, D. J., Mohamed, S., & Wierstra, D. (2014).
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
.
Doersch, C. (2016).
Tutorial on variational autoencoders
.
Lecture 4 (4/11/2019): Auto-regressive Models
Lectured by Vinayak Kumar, Mayank Pandey, Alycia Lee, Albert Tseng, Eric Han & Emma Qian
Mentored by Jeremy
Slides
Graves, A. (2013).
Generating sequences with recurrent neural networks
.
Van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016).
Pixel Recurrent Neural Networks
.
See also:
Bengio, Y., & Bengio, S. (2000).
Modeling high-dimensional discrete data with multi-layer neural networks
.
Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016).
Wavenet: A generative model for raw audio
.
Lecture 5 (4/16/2019): Generative Adversarial Networks
Lectured by Daniel Guth, Siddharth Prasad, Jieni Li, Jing Ding & Sunny Can
Slides
&
Demo
Mentored by Yisong
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014).
Generative adversarial nets
.
Goodfellow, I, (2016)
NIPS 2016 Tutorial: Generative Adversarial Networks
Brock, A., Donahue, J., & Simonyan, K. (2019).
Large scale gan training for high fidelity natural image synthesis
.
See also:
Radford, A., Metz, L., & Chintala, S. (2016).
Unsupervised representation learning with deep convolutional generative adversarial networks
.
Lecture 6 (4/18/2019): Flow-based Models & Normalizing Flows
Lectured by Kevin Yu, Jesse Cai, Akshay Vegesna, Alex Lettenberger & Rafael Fueyo-Gomez
Slides
&
Demo 1
,
Demo 2
Mentored by Joe
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017).
Density estimation using real nvp
.
Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016).
Improved variational inference with inverse autoregressive flow
.
See also:
Dinh, L., Krueger, D., & Bengio, Y. (2015).
NICE: Non-linear independent components estimation
.
Rezende, D., & Mohamed, S. (2015).
Variational Inference with Normalizing Flows
.
Papamakarios, G., Pavlakou, T., & Murray, I. (2017).
Masked autoregressive flow for density estimation
.
Lecture 7 (4/23/2019): Discrete Latent Variable Models
Lectured by Yoojin (Terry) Chung, Brandon Quach, Daniel Kyme, Alveera Khan & Ruoyun Zheng
Slides
Mentored by Jeremy
Mnih, A., & Gregor, K. (2014).
Neural Variational Inference and Learning in Belief Networks
.
Jang, E., Gu, S., & Poole, B. (2017).
Categorical reparameterization with gumbel-softmax
.
See also:
Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995).
The Helmholtz Machine
.
Gregor, K., Danihelka, I., Mnih, A., Blundell, C., & Wierstra, D. (2014).
Deep AutoRegressive Networks
.
Maddison, C. J., Mnih, A., & Teh, Y. W. (2016).
The concrete distribution: A continuous relaxation of discrete random variables
.
Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., & Sohl-Dickstein, J. (2017).
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models
.
Lecture 8 (4/25/2019): Sequential Latent Variable Models
Lectured by Erich Liang, Sarina Liu, Christine Yu, Kevin Yu & Kushal Tirumala
Slides
Mentored by Eric
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C., & Bengio, Y. (2015).
A recurrent latent variable model for sequential data
.
Yingzhen Li
,
Stephan Mandt
(2018).
Disentangled Sequential Autoencoder
.
See also:
Fraccaro, M., Sønderby, S. K., Paquet, U., & Winther, O. (2016).
Sequential neural models with stochastic layers
.
Goyal, A. G. A. P., Sordoni, A., Côté, M. A., Ke, N. R., & Bengio, Y. (2017).
Z-forcing: Training stochastic recurrent networks
.
Lecture 9 (4/30/2019): Energy-Based Models
Lectured by Alex Janosi, Chad Thut, Jacob Snyder, Richard Feder-Staehle
Mentored by Yisong
Slides
Salakhutdinov, R., & Hinton, G. (2009).
Deep boltzmann machines
.
Du, Y., & Mordatch, I. (2019).
Implicit Generation and Generalization with Energy-Based Models
.
See also:
LeCun, Y., Chopra, S., Hadsell, R., Marc’Aurelio, R., & Huang, F. J. (2006).
A tutorial on energy-based learning
.
Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning
. Chapters 16, 18, and 20.
Lecture 10 (5/2/2019): Neural Autoregressive Networks
Lectured by Ankush Hommerich-Dutt, Jagath Vytheeswaran, Anirudh Rangaswamy, Aidan Swope & Brendan Hollaway
Slides
Mentored by Joe
Larochelle, H., & Murray, I. (2011).
The neural autoregressive distribution estimator
.
Uria, B., Murray, I., & Larochelle, H. (2014).
A deep and tractable density estimator
.
See also:
Uria, B., Murray, I., & Larochelle, H. (2013).
RNADE: The real-valued neural autoregressive density-estimator
.
Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015).
Made: Masked autoencoder for distribution estimation
.
Lecture 11 (5/7/2019): Deep Structured Prediction w/ Message Passing
Lectured by Alex Guerra, Clare Hao & Umesh Padia
Slides
Mentored by Hoang
Chen, Schwing, Yuille, Urtasun. (2015).
Learning Deep Structured Models
. In
International Conference on Machine Learning
.
Additional Reading:
Course Notes on Message Passing
Yedidia et al.,
Understanding Belief Propagation and its Generalizations
Messaoud et al., ECCV 2018.
Structural Consistency and Controllability for Diverse Colorization
Graber et al., NeurIPS 2018.
Deep Structured Prediction with Nonlinear Output Transformations
Lecture 12 (5/9/2019): Adversarial Autoencoders
Lectured by Karena Cai, Matthew Levine, Jennifer Sun & Xiaoqiao Chen
Slides
Mentored by Jialin
Mescheder, L., Nowozin, S., & Geiger, A. (2017).
Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks
.
See also:
Makhzani, A., Shlens, J., Jaitly, N., & Goodfellow, I. (2016).
Adversarial Autoencoders
.
Lecture 13 (5/14/2019): Language Models, Transformers
Lectured by Megan Durney, Sophia Coplin, Tristan Ang & Surya Mathialagan
Slides
Mentored by Jeremy
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language Models are Unsupervised Multitask Learners
.
See also:
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need
.
Google AI Blog Post
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018).
Improving language understanding by generative pre-training
.
Lecture 14 (5/16/2019): Generative Model Evaluation
Lectured by Nick Haliday, Tim Krasnoperov, Pai Buabthong, Zhewei Chen & Hongsen Qin
Slides
Mentored by Jeremy
Theis, L., van den Oord, A., & Bethge, M. (2016).
A note on the evaluation of generative models
.
Alemi, A. A., & Fischer, I. (2018).
GILBO: One Metric to Measure Them All
.
See also:
Wu, Y., Burda, Y., Salakhutdinov, R., & Grosse, R. (2017).
On the Quantitative Analysis of Decoder-Based Generative Models
.
Lecture 15 (5/21/2019): Disentangled Representation Learning
Lectured by Neehar Kondapaneni, Guruprasad Raghavan, Francesca Baldini, Charles Guan & Kadina Johnston
Mentored by Yisong
Slides
&
InfoGAN Demo
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016).
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
.
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., ... & Lerchner, A. (2017).
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework
.
See also:
Chen, T. Q., Li, X., Grosse, R. B., & Duvenaud, D. K. (2018).
Isolating sources of disentanglement in variational autoencoders
.
Lecture 16 (5/23/2018): Conditional Generation
Lectured by Alexander Cui, Anne Zhou, Matthew Wu, Victor Chen & Josh Chen
Mentored by Yisong
Slides
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017).
Image-to-image translation with conditional adversarial networks
.
Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas, D. N. (2017).
Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
.
See also:
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., & Graves, A. (2016).
Conditional image generation with pixelcnn decoders
.
Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-consistent adversarial networks
.
Lecture 17 (5/28/2019): W-GANs + Spectral Normalization
Lectured by Yujia Huang, Tongxin Li, Hao Liu, Sihui (Sophie) Dai & Tanvi Gupta
Mentored by Jeremy
Slides
Arjovsky, M., Chintala, S., & Bottou, L. (2017).
Wasserstein gan
.
Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018).
Spectral normalization for generative adversarial networks
.
Lecture 18 (5/30/2019): Generative Models & Reinforcement Learning
Lectured by Luke Juusola, Robin Henry, Michaelangelo Caporale, Anthony Bao & Ethan Pronovost
Mentored by Joe
Slides
Ha, D., & Schmidhuber, J. (2018).
Recurrent world models facilitate policy evolution
.
Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018).
Deep reinforcement learning in a handful of trials using probabilistic dynamics models
.
See also:
Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J. (2018).
Learning Latent Dynamics for Planning from Pixels
.
Lecture 19 (6/4/2019): Causal Models
Lectured by Danny Sawyer, Avinoam Bar Zion, David Mittelstein, Karthik Nair & Ted Yu
Mentored by Yisong
Slides
Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., & Welling, M. (2017).
Causal Effect Inference with Deep Latent-Variable Models
.
See also:
Introduction to the foundations of causal discovery
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Visual Causal Feature Learning
Unsupervised Discovery of El Nino˜ Using Causal Feature Learning on Microlevel Climate Data
Lecture 20 (6/6/2019): Poster Session
Google Sites
Report abuse
Google Sites
Report abuse