research papers

[27] c. de filippis, g. mingione, the sharp growth rate in nonuniformly elliptic schauder theory. duke math. j. 174(9):1775-1848, (2025). [doi]

[26] c. de filippis, l. koch, j. kristensen, quantified legendreness and the regularity of minima. arch. ration. mech. anal. 248:69, (2024). [doi]

[25] c. de filippis, g. mingione, gradient regularity in mixed local and nonlocal problems. math. ann. 388:261-328, (2024). [doi]

[24] c. de filippis, g. mingione, nonuniformly elliptic schauder theory. invent. math. 234, 1109-1196, (2023). [doi]

[23] c. de filippis, m. piccinini, borderline global regularity for nonuniformly elliptic systems. int. math. res. notices 20, vol. 2023, 17324-17376, (2023). [doi]

[22] c. de filippis, g. mingione, regularity for double phase problems at nearly linear growth. arch. ration. mech. anal. 247:85, (2023). [doi]

[21] c. de filippis, b. stroffolini, singular multiple integrals and nonlinear potentials. j. funct. anal. 285(2), 109952, (2023). [doi]

[20] c. de filippis, quasiconvexity and partial regularity via nonlinear potentials. j. math. pures appl. 163, 11-82, (2022). [doi] 

[19] c. de filippis, fully nonlinear free transmission problems with nonhomogeneous degeneracies. interfaces free bound. 24, 197-233, (2022). [doi]

[18] i. chlebicka, c. de filippis, l. koch, boundary regularity for manifold constrained p(x)-harmonic maps. j. london math. soc. (2) 104, 2335-2375, (2021). [doi]

[17] c. de filippis, g. mingione, lipschitz bounds and nonautonomous integrals. arch. ration. mech. anal. 242, 973-1057, (2021). [doi]

[16] c. de filippis, g. mingione, interpolative gap bounds for nonautonomous integrals. analysis and mathematical physics 11:117, (2021). [doi]

[15] c. de filippis, f. leonetti, uniform ellipticity and (p,q)-growth. journal of mathematical analysis and applications 501, 1, 124451, (2021). [doi]

[14] c. de filippis, regularity results for a class of non-autonomous obstacle problems with (p,q)-growth. journal of mathematical analysis and applications 501, 1, 123450, (2021). [doi]

[13] c. de filippis, regularity for solutions of fully nonlinear elliptic equations with non-homogeneous degeneracy. proc. royal soc. edinburgh math. 151, 1, 110-132, (2021). [doi]

[12] c. de filippis, optimal gradient estimates for multi-phase integrals. mathematics in engineering 4, 5, 1-36, (2021). [doi]

[11] c. de filippis, gradient bounds for solutions to irregular parabolic equations with (p,q) growth. calc. var. & pde 59:171, (2020). [doi]

[10] c. de filippis, on the regularity of the omega-minima of phi-functionals. nonlinear anal. 194, 111464, (2020). [doi]

[9] c. de filippis, g. mingione, manifold constrained non-uniformly elliptic problems. journal of geometric analysis 30:1661-1723, (2020). [doi]

[8] i. chlebicka, c. de filippis, removable sets in non-uniformly elliptic problems. ann. mat. pura appl. 199:619-649, (2020). [doi]

[7] c. de filippis, g. mingione, on the regularity of minima of non-autonomous functionals. journal of geometric analysis 30:1584-1626, (2020). [doi]

[6] c. de filippis, g. mingione, a borderline case of calderón-zygmund estimates for non-uniformly elliptic problems. st. petersburg mathematical journal 31, 455-477, (2020) [doi]

[5] c. de filippis, j. oh, regularity for multi-phase variational problems. journal of differential equations 267, 3, 1631-1670, (2019). [doi]

[4] c. de filippis, g. palatucci, hölder regularity for nonlocal double phase equations. journal of differential equations 267, 1, 547-586, (2019). [doi]

[3] c. de filippis, partial regularity for manifold constrained p(x)-harmonic maps. calc. var. & pde 58:47, (2019). [doi]

[2] c. de filippis, higher integrability for constrained minimizers of integral functionals with (p,q)-growth in low dimension. nonlinear anal. 170, 1-20, (2018). [doi]

[1] c. de filippis, p. goatin, the initial-boundary value problem for general non-local scalar conservation laws in one space dimension. nonlinear anal. 161, 131-156, (2017). [doi]