Papers in international journals
18. Chalub, F.A.C.C., Souza, M.O. Insuperable Strategies in Two-Player and Reducible Multi-Player Games. Dyn Games Appl (2025). DOI
17. Rocha, F., Silva, C. J., Pinheiro, S. J., Afreixo, V., Leitão, R. P., & Felgueiras, M. (2025). Characterization of the Appointment’s Reasons for “P—Psychological” on the ICPC-2 Scale in Primary Health Care Services. Mathematical and Computational Applications, 30(2), 28. DOI
16. A. L. Saraiva, C. J. Silva, J. Cabral, J. P. Antunes, P. Rama, S. J. Pinheiro & V. Afreixo, Analysis of Primary Healthcare Indicators. Mathematical and Computational Applications, 30(1) (2025), 14. DOI
15. M. Khalighi, L. Lahti, F. Ndairou, P. Rashkov, and D. F. M. Torres, Fractional modelling of COVID-19 transmission incorporating asymptomatic and super-spreader individuals, Math. Biosci. 380 (2025), Art. 109373, 1-9. DOI
14. D. Yapiskan, C. J. Silva and D. F. M. Torres, Optimal Control of Microcephaly Under Vertical Transmission of Zika, Axioms 13 (2024), no. 11, Art. 772, 14 pp. DOI
13. M. Lemos-Silva, S. Vaz, D. F. M. Torres, Exact solution for a discrete-time SIR model, Appl. Numer. Math. 207 (2025) 339-347. DOI
12. E. Addai, D. F. M. Torres, Z. Abdul-Hamid, M. N. Mezue and J. K. K. Asamoah, Modelling the dynamics of online food delivery services on the spread of food-borne diseases, Model. Earth Syst. Environ. 10 (2024), no. 4, 4993-5008. https://doi.org/10.1007/s40808-024-02046-8
11. Fabio A.C.C. Chalub, Paulo Doutor, Paula Patrício, Maria do Céu Soares, "Social vs. individual age-dependent costs of imperfect vaccination", Mathematical Biosciences, 2024, 109259. ISSN 0025-5564. https://doi.org/10.1016/j.mbs.2024.109259
10. Hansen, Matheus, and Fabio ACC Chalub. "Population dynamics and games of variable size." Journal of Theoretical Biology (2024): 111842. https://doi.org/10.1016/j.jtbi.2024.111842
9. O. K. Wanassi and D. F. M. Torres, Modeling Blood Alcohol Concentration Using Fractional Differential Equations Based on the $\psi$-Caputo Derivative, Math. Meth. Appl. Sci. 47 (2024), no. 9, 7793-7803. DOI
8. J. M. Oliveira, R. Travaglini, Reaction–diffusion systems derived from kinetic models for Multiple Sclerosis, Mathematical Models and Methods in Applied Sciences. https://doi.org/10.1142/S0218202524500222
7. M. Menale, A. J. Soares, A kinetic model with time-dependent proliferative/destructive rates, Math. Meth. Appl. Sci., 2023,1–16, http://doi.org/10.1002/mma.9868
6. A. Tajani, F.-Z. El Alaoui and D. F. M. Torres, Boundary Regional Controllability of Semilinear Systems Involving Caputo Time Fractional Derivatives, Lib. Math. (N.S.) 43 (2023), no. 1, 31-48.
5. A. Tajani, F.-Z. El Alaoui and D. F. M. Torres, Boundary controllability of Riemann-Liouville fractional semilinear equations, Commun. Nonlinear Sci. Numer. Simul. 131 (2024), Art. 107814, 11 pp. DOI: https://doi.org/10.1016/j.cnsns.2023.107814
4. Tedim, S., Afreixo, V., Felgueiras, M., Leitão, R.P., Pinheiro, S.J., Silva, C.J., Evaluating COVID-19 in Portugal: Bootstrap confidence interval. AIMS Mathematics, 2024, 9(2): 2756-2765. https://doi.org/10.3934/math.2024136
3. Chalub, FACC, Gómez-Corral, A, López-García, M, Palacios-Rodríguez, F. A., Markov chain model to investigate the spread of antibiotic-resistant bacteria in hospitals. Stud Appl Math. 2023; 151: 1498–1524. https://doi.org/10.1111/sapm.12637
2. Zaitri, M.A., Zitane, H., Torres, D.F.M., Pharmacokinetic/Pharmacodynamic anesthesia model incorporating psi-Caputo fractional derivatives. Computers in Biology and Medicine. 2023, 107679. https://doi.org/10.1016/j.compbiomed.2023.107679
1. Zaitri M.A., Silva C.J., Torres D.F.M. An Analytic Method to Determine the Optimal Time for the Induction Phase of Anesthesia. Axioms. 2023; 12(9):867. https://doi.org/10.3390/axioms12090867
Book chapters
3. Zahra Belarbi, Benaoumeur Bayour and Delfim F. M. Torres,The non-population conserving SIR model on time scales. In: Chapter 8 of Mathematical Analysis: Theory and Applications, Chapman & Hall, 2025, 134-146. DOI
2. C. J. Silva, G. Cantin, Optimal Control Synchronization of a Complex Network of Predator-Prey Systems, In: IVAN KUPKA LEGACY: A Tour Through Controlled Dynamics, By Bernard Bonnard, Monique Chyba, David Holcman and Emmanuel Trélat (Eds.), AIMS Applied Mathematics, Vol. 12, Chapter 13, pages, 283--304, 2024. ISBN-10: 1-60133-026-X; ISBN-13: 978-1-60133-026-0 https://www.aimsciences.org/book/AM/volume/58
1. Pinto, J., Vaz, S., Torres, D.F.M., A Lotka-Volterra type model analyzed through different techniques. In: Pinto, C.M., Ionescu, C.M. (eds), Computational and Mathematical Models in Biology, Springer, Cham, 2023, 129-157. http://dx.doi.org/10.1007/978-3-031-42689-6_6