09:00 - 09:10 Welcome by the organisers
09:10 – 10:00 Tutorial: Yuta Saito Counterfactual Learning and Evaluation for Recommender Systems:
from Foundations to Emerging Challenges in the Era of LLMs
10:00 – 10:30 Paper Session #1
AutoOPE: Automated Off-Policy Estimator Selection
Nicolò Felicioni, Michael Benigni and Maurizio Ferrari Dacrema.
A Simple Model to Estimate Sharing Effects in Social Networks
Olivier Jeunen.
10:30 – 11:15 Coffee Break
11:15 – 12:15 Keynote: Ciarán Gilligan-Lee Counterfactual Reasoning and What it’s Good for
12:15 – 12:45 Paper Session #2
Combining Open-box Simulation and Importance Sampling for Tuning Large-Scale Recommenders
Kaushal Paneri, Michael J. Munje, Kailash Singh Maurya, Adith Swaminathan and Yifan Shi.
Causal Discovery in Recommender Systems: Example and Discussion
Emanuele Cavenaghi, Fabio Stella and Markus Zanker.
12:45 – 14:30 Lunch Break
14:30 – 15:30 Keynote: Thorsten Joachims Towards Steerable AI Systems
15:30 – 16:00 Paper Session #3
Logarithmic Smoothing for Pessimistic Off-Policy Evaluation, Selection and Learning
Otmane Sakhi, Imad Aouali, Pierre Alquier and Nicolas Chopin.
Proximal Ranking Policy Optimization for Practical Safety in Counterfactual Learning to Rank
Shashank Gupta, Harrie Oosterhuis and Maarten de Rijke.
16:00 – 16:45 Coffee Break
16:45 – 17:15 Paper Session #4
The Relevance of Item-Co-Exposure For Exposure Bias Mitigation
Thorsten Krause, Alina Deriyeva, Jan Heinrich Beinke, Gerrit Bartels and Oliver Thomas.
Causal Feature Selection Method for Contextual Multi-Armed Bandits in Recommender System
Zhenyu Zhao and Yexi Jiang.
17:15 – 18:15 Poster Session [located in the Atrio Cherubini]