Flexible, task-dependent bimanual coordination along movement direction and extent. Ravikumar, P., & Mutha, P. K. (2025). bioRxiv, 2025-09. https://doi.org/10.1101/2025.09.24.678336
Motor learning driven by sensory prediction errors is insensitive to task performance feedback. Panthi, G., & Mutha, P. (2025). bioRxiv, 2025-06. https://doi.org/10.1101/2025.06.28.662119
Reactivation protects human motor memories against interference from competing inputs. Suresh, T., Kumar, A., & Mutha, P. K. (2025). bioRxiv, 2025-06. https://doi.org/10.1101/2025.06.26.661747
Task relevance selectively modulates sensorimotor adaptation in the presence of multiple prediction errors. Shingane, S. N., Rao, N., Kumar, N., & Mutha, P. K. (2025). Journal of Neurophysiology. https://doi.org/10.1152/jn.00511.2024
Limb-related sensory prediction errors and task-related performance errors facilitate human sensorimotor learning through separate mechanisms. Oza, A., Kumar, A., Sharma, A., & Mutha, P. K. (2024). PLoS Biology, 22(7), e3002703. https://doi.org/10.1371/journal.pbio.3002703
A lateralized motor network in order to understand adaptation to visuomotor rotation. Elango S, Chakravarthy VS, Mutha PK (2024). Journal of Neural Engineering, 21(3), 036003. https://doi.org/10.1088/1741-2552/ad4211
Apraxia. Haaland, K. Y., & Mutha, P. K. (2024). Reference Collection in Neuroscience and Biobehavioral Psychology. Elsevier, ISBN 9780128093245.
Spontaneous recovery in an untrained arm as an assay of interlimb transfer of motor learning. Kumar, A., & Mutha, P. K. (2023). Journal of Experimental Psychology: Human Perception and Performance, 49(5), 725. http://doi.org/10.1037/xhp0001124
Movement neuroscience foundations of neurorehabilitation. Sainburg, R. L., & Mutha, P. K. (2022). In Neurorehabilitation technology (pp. 19–39). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-08995-4_2
Sensorimotor learning in response to errors in task performance. Sadaphal, D. P., Kumar, A., & Mutha, P. K. (2022). eNeuro, 9(2). http://doi.org/10.1523/ENEURO.0371-21.2022
Symmetric interlimb transfer of newly acquired skilled movements. Yadav, G., & Mutha, P. K. (2020). Journal of Neurophysiology, 124(5), 1364–1376. http://doi.org/10.1152/Jn.00777.2019
Mechanistic determinants of effector-independent motor memory encoding. Kumar, A., Panthi, G., Divakar, R., & Mutha, P. K. (2020). Proceedings of the National Academy of Sciences of the U.S.A., 117(29), 17338–17347. https://doi.org/10.1073/pnas.2001179117
Laterality of damage influences the relationship between impairment and arm use after stroke. Yadav, G., Haaland, K. Y., & Mutha, P. K. (2019). Journal of the International Neuropsychological Society, 25(5), 470–478. http://doi.org/10.1017/S1355617718001261
Interference between competing motor memories developed through learning with different limbs. Kumar, N., Kumar, A., Sonane, B., & Mutha, P. K. (2018). Journal of Neurophysiology, 120(3), 1061–1073. http://doi.org/10.1152/Jn.00905.2017
Reflex circuits and their modulation in motor control: a historical perspective and current view. Mutha, P. K. (2017). Journal of the Indian Institute of Science, 97(4), 555–565. https://doi.org/10.1007/s41745-017-0052-2
The neuropsychology of movement and movement disorders: neuroanatomical and cognitive considerations. Haaland, K. Y., Dum, R. P., Mutha, P. K., Strick, P. L., & Tröster, A. I. (2017). Journal of the International Neuropsychological Society, 23(9–10), 768–777. http://doi.org/10.1017/S1355617717000698
Motor adaptation deficits in ideomotor apraxia. Mutha, P. K., Stapp, L. H., Sainburg, R. L., & Haaland, K. Y. (2017). Journal of the International Neuropsychological Society, 23(2), 139–149. http://doi.org/10.1017/S135561771600120X
Deep breathing practice facilitates retention of newly learned motor skills. Yadav, G., & Mutha, P. K. (2016). Scientific Reports, 6(1), 37069. http://doi.org/10.1038/Srep37069
Error detection is critical for visual-motor corrections. Sainburg, R. L., & Mutha, P. K. (2016). Motor Control, 20(2), 187–194. http://doi.org/10.1123/Mc.2015-0022
Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli. Kumar, N., & Mutha, P. K. (2016). Journal of Neurophysiology, 115(3), 1654–1663. http://doi.org/10.1152/Jn.00850.2015
Learning of bimanual motor sequences in normal aging. Bhakuni, R., & Mutha, P. K. (2015). Frontiers in Aging Neuroscience, 7, 76. http://doi.org/10.3389/Fnagi.2015.00076
The influence of visual target information on the online control of movements. Sarlegna, F. R., & Mutha, P. K. (2015). Vision Research, 110, 144–154. http://doi.org/10.1016/J.Visres.2014.07.001
Frontal and parietal cortex contributions to action modification. Mutha, P. K., Stapp, L. H., Sainburg, R. L., & Haaland, K. Y. (2014). Cortex, 57, 38–50. http://doi.org/10.1016/J.Cortex.2014.03.005
Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Mani, S., Mutha, P. K., Przybyla, A., Haaland, K. Y., Good, D. C., & Sainburg, R. L. (2013). Brain, 136(4), 1288–1303. http://doi.org/10.1093/Brain/Aws283
Rethinking motor lateralization: specialized but complementary mechanisms for motor control of each arm. Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2013). PLOS ONE, 8(3), e58582. http://doi.org/10.1371/Journal.Pone.0058582
The effects of brain lateralization on motor control and adaptation. Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2012). Journal of Motor Behavior, 44(6), 455–469. http://doi.org/10.1080/00222895.2012.747482
Relationship between arm usage and instrumental activities of daily living after unilateral stroke. Haaland, K. Y., Mutha, P. K., Rinehart, J. K., Daniels, M., Cushnyr, B., & Adair, J. C. (2012). Archives of Physical Medicine and Rehabilitation, 93(11), 1957–1962. http://doi.org/10.1016/J.Apmr.2012.05.011
Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Schaefer, S. Y., Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2012). Cerebral Cortex, 22(6), 1407–1419. http://doi.org/10.1093/Cercor/Bhr237
Applying Principles of Motor Control to Rehabilitation Technologies. Sainburg, R. L., & Mutha, P. K. (2011). In Neurorehabilitation Technology (pp. 87–103). London: Springer London. https://doi.org/10.1007/978-1-4471-2277-7_6
Critical neural substrates for correcting unexpected trajectory errors and learning from them. Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011). Brain, 134(12), 3647–3661. http://doi.org/10.1093/Brain/Awr275
Left parietal regions are critical for adaptive visuomotor control. Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011). Journal of Neuroscience, 31(19), 6972–6981. http://doi.org/10.1523/Jneurosci.6432-10.2011
Coordination deficits in ideomotor apraxia during visually targeted reaching reflect impaired visuomotor transformations. Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2010). Neuropsychologia, 48(13), 3855–3867. http://doi.org/10.1016/J.Neuropsychologia.2010.09.018
Shared bimanual tasks elicit bimanual reflexes during movement. Mutha, P. K., & Sainburg, R. L. (2009). Journal of Neurophysiology, 102(6), 3142–3155. http://doi.org/10.1152/Jn.91335.2008
Visual modulation of proprioceptive reflexes during movement. Mutha, P. K., Boulinguez, P., & Sainburg, R. L. (2008). Brain Research, 1246, 54–69. http://doi.org/10.1016/J.Brainres.2008.09.061
Don't let it slip: Predictive control of grip force after changes in task goals. Mutha, P., & Shabbott, B. (2008). Journal of Neuroscience, 28(12), 2965–2966. http://doi.org/10.1523/Jneurosci.0110-08.2008
Control of velocity and position in single joint movements. Mutha, P. K., & Sainburg, R. L. (2007). Human Movement Science, 26(6), 808–823. http://doi.org/10.1016/J.Humov.2007.06.001