Description
The project CODYSMA: Computational Dynamics and Stochastics on Manifolds is a five year project which started January 1st, 2020 supported by the Norwegian Research Council through the program FRIPRO. The objective of the project is to provide the mathematical community with new mathematical theories and software tools for analysis and computations on manifolds.
Project leader
Members and collaborators
Evelyn Buckwar (Linz)
Charles Curry (Gjøvik)
Kurusch Ebrahimi-Fard (Trondheim)
Gunnar Fløystad (Bergen)
Erlend Grong (Bergen)
Anne Kværnø (Trondheim)
Irina Markina (Bergen)
Robert McLachlan (Massey Univ., New Zealand)
Brynjulf Owren (Trondheim)
Alexander Schmeding (Nord)
Gilles Vilmart (Geneva)
Anke Wiese (Edinburgh)
Antonella Zanna (Bergen)
Project staff
Publications and preprints of the project
E. Bronasco, A. Laurent, Hopf algebra structures for the backward error analysis of ergodic stochastic differential equations, arXiv:2407.07451.
A. Laurent, The Lie derivative and Noether's theorem on the aromatic bicomplex for the study of volume-preserving numerical integrators, Journal of Computational Dynamics 2024, 11(1): 10-22, arXiv:2307.07984.
Z. Brzeźniak, M. Maurelli, A. Schmeding, The Ebin-Marsden toolbox for stochastic PDEs: stochastic Euler equations, arXiv:2311.08197.
A. Laurent, H. Z. Munthe-Kaas, The universal equivariance properties of exotic aromatic B-series, to appear in Found. Comput. Math, arXiv:2305.10993.
A. Laurent, R. I. McLachlan, H. Z. Munthe-Kaas, O. Verdier, The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators, Forum of Mathematics Sigma 11 (2023), E69, arXiv:2301.10998.
D. Caudillo, J. Diehl, K. Ebrahimi-Fard, E. Verri, Graph counting signatures and bicommutative Hopf algebras, arXiv:2206.08323.
M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, H. Z. Munthe-Kaas, Algebraic aspects of connections: from torsion, curvature, and post-Lie algebras to Gavrilov's double exponential and special polynomials, arXiv:2205.04381.
L. Rahm, An operadic approach to substitution in Lie-Butcher series, Forum of Mathematics, Sigma, vol. 10, arXiv:2103.10893.
H. Z. Munthe-Kaas, J. Stava, Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces, arxiv:2306.15582.
J. Stava, The Connection Algebra of Reductive Homogeneous Spaces, arxiv:2310.08310.
Recorded talks
Dominique Manchon, Algebraic aspects of connections
Dominique Manchon, Post-Lie algebras and affine connections
Adrien Laurent, On the geometric and algebraic properties of stochastic backward error analysis
Adrien Laurent, Exotic aromatic B-series for the integration of ergodic stoch. diff. equations
Ludwig Rahm, Substitution in Lie-Butcher Series
Jonatan Stava, Lie admissible triple algebras - The connection algebra of symmetric spaces