I used the K nearest neighbors machine learning method to predict conditions of used cars, and after some trial and error, I assigned 7 to the K value. I first found data online that display cars with conditions, acceptable, unacceptable, good, and very good. I then turned those values into integer values that I used for predictions.
import sklearn
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import numpy as np
from sklearn import linear_model, preprocessing
data = pd.read_csv("car.data")
print(data.head())
le = preprocessing.LabelEncoder()
buying = le.fit_transform(list(data["buying"])) #turn values in list into integer values
maint = le.fit_transform(list(data["maint"]))
door = le.fit_transform(list(data["door"]))
persons = le.fit_transform(list(data["persons"]))
lug_boot = le.fit_transform(list(data["lug_boot"]))
safety = le.fit_transform(list(data["safety"]))
cls = le.fit_transform(list(data["class"]))
predict = "class"
x = list(zip(buying, maint, door, persons, lug_boot, safety))
y = list(cls)
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.1)
model = KNeighborsClassifier(n_neighbors=7)
model.fit(x_train, y_train)
acc = model.score(x_test, y_test)
print(acc)
predicted = model.predict(x_test) #predict the model
names = ["unacc", "acc", "good", "very good"]
for x in range(len(predicted)):
print("Predicted: ", names[predicted[x]], "Data: ", x_test[x], "Actual: ", y_test[x]) #print out data
n= model.kneighbors([x_test[x]], 7, True)
print("N: ", n)