Publications

See a preview here.

The effect of label noise on the information content of neural representations, Ali Hussaini Umar, Franky Kevin Nando Tezoh, Jean Barbier, Santiago Acevedo, Alessandro Laio (2025), https://doi.org/10.48550/arXiv.2510.06401

Generalization performance of narrow one-hidden layer neural networks in the teacher-student setting, Rodrigo Perez Ortiz, Gibbs Nwemadji, Jean Barbier, Federica Gerace, Alessandro Ingrosso, Clarissa Lauditi, Enrico Malatesta (2025),  https://doi.org/10.48550/arXiv.2507.00629

See a preview here.

Matrix inference in growing rank regimes, Farzad Pourkamali, Jean Barbier, Nicolas Macris, IEEE Transactions on Information Theory (2024), https://doi.org/10.48550/arXiv.2306.01412

Fundamental limits of overparametrized shallow neural networks for supervised learning, Francesco Camilli, Daria Tieplova, Jean Barbier, Bolletino dell'Unione Matematica Italiana (2025), https://doi.org/10.1007/s40574-025-00506-2 

See a talk by Francesco about this work here

Fundamental limits in structured principal component analysis and how to reach them, Jean Barbier, Francesco Camilli, Marco Mondelli, Manuel Sáenz, Proceedings of the National Academy of Sciences (PNAS) 120 (30) e2302028120 (2023), https://doi.org/10.1073/pnas.230202812 

See a preview here.

See a talk by Jean on this paper here