Submitted / Preprint
37. Esca Disease triggers local transcriptomic response and systemic DNA methylation changes in grapevine. Berger M.J., Garcia V., Rubio B., Bortolami G., Gambetta, G.A. Delmas C.E.L., Gallusci P. bioRxiv preprint, 2025. doi: https://doi.org/10.1101/2025.08.11.669596
36. Fungal pathogen activity and stress-dependent responses of grapevine wood under esca and drought. Chambard M., Cantù D., Bortolami G., Dell’Acqua N., Ferrer N., Gambetta G. A., Garcia J. F., Massonnet M., Gastou P., Moretti S., Rochepeau A., Pétriacq P., Foulongne-Oriol M., Delmas C.E.L. bioRxiv preprint, 2025. https://doi.org/10.1101/2025.08.05.668645
2025
35. Differential impacts of drought and esca expression on Ascomycota fungi in the trunks and young organs of mature grapevines. Gastou P., Bortolami G., Ferrer N., Gambetta G.A., Moretti S., Vallance J., Delmas C.E.L. (2025) Phytobiomes Journal https://doi.org/10.1094/PBIOMES-07-25-0048-R / bioRxiv preprint: 10.1101/2025.07.03.663063
34. Reduced canopy transpiration in esca-symptomatic plants delayed and mitigated water stress. Dell'Acqua N., Gambetta G.A., Bartlett M.K., Burlett R., Chambard M., Delzon S., Ferrer N., Pinol Daubisse M., Sinclair G.C., Delmas C.E.L. (2025) Plant Physiology. kiaf361, https://doi.org/10.1093/plphys/kiaf361
33. Identification of ecoclimatic indicators of esca disease through 20 years of large-scale vineyard monitoring in France. Etienne L., Martinetti D., Frank E., Bonnardot V., Michel L., Guérin-Dubrana L., Delmas C.E.L. (2025) Plant Disease. https://doi.org/10.1094/PDIS-01-25-0228-RE
32. Nitrogen nutrition impacts grapevine esca leaf symptom incidence, physiology and metabolism. Dell'Acqua N., Gambetta G.A., Comont G., Ferrer N., Rochepeau A., Petriacq P., Delmas CEL. (2025) Journal of Experimental Botany, eraf172 https://doi.org/10.1093/jxb/eraf172 PDF: https://www.biorxiv.org/content/10.1101/2024.08.31.610625v2
31. Differential Physiological Responses of Resistant and Susceptible Grape Cultivars to Eutypa dieback. Sinclair G.C., Travadon R., Eschen P.J., Wallis C., Baumgartner K., Delmas C.E.L., Hnizdor J.F., Bartlett M.K. (2025) Journal of Experimental Botany, eraf103, https://doi.org/10.1093/jxb/eraf103.
2024
30. Genome analysis of the esca-associated Basidiomycetes Fomitiporia mediterranea, Fomitiporia polymorpha, Inonotus vitis, and Tropicoporus texanus reveal virulence factor repertoires characteristic of white-rot fungi. Garcia-Navarrete, J., Figueroa-Balderas R., Comont G., Delmas C.E.L., Baumgartner K., Cantu D. (2024) G3: Genes|Genomes|Genetics. 14(10), jkae189 https://doi.org/10.1093/g3journal/jkae189
29. Building integrated plant health surveillance: a proactive research agenda for anticipating and mitigating disease and pest emergence. Soubeyrand S., A. Estoup, A. Cruaud, S. Malembic-Maher, C. Meynard, V. Ravigné, M. Barbier, B. Barrès, K. Berthier, S. Boitard, S. Dallot, S. Gaba, M. Grosdidier, M. Hannachi, M.-A. Jacques, M. Leclerc, P. Lucas, D. Martinetti, C. Mougel, C. Robert, A. Roques, J.-P. Rossi, F. Suffert, P. Abad, M.-A. Auger-Rozenberg, J.-S. Ay, M. Bardin, H. Bernard, D. A. Bohan, T. Candresse, P. Castagnone-Sereno, E. G. J. Danchin, C. E. L. Delmas, P. Ezanno, F. Fabre, B. Facon, E. Gabriel, J. Gaudin, B. Gauffre, M. Gautier, C. Guinat, C. Lavigne, O. Lemaire, C. Martinez, L. Michel, B. Moury, K. Nam, C. Nédellec, M. Ogliastro, J. Papaïx, N. Parisey, S. Poggi, A. Radici, J.-Y. Rasplus, X. Reboud, C. Robin, M. Roche, A. Rusch, N. Sauvion, J.-C. Streito, E. Verdin, A.-S. Walker, A. Xuéreb, G. Thébaud & C. E. Morris (2024) CABI Agriculture and Bioscience. 5, 72. https://doi.org/10.1186/s43170-024-00273-8
28. Exploring the role of cultivar, year and plot age in the incidence of esca and Eutypa dieback: Insights from 20 years of regional surveys in France. Etienne L., Fabre F., Martinetti D., Frank E., Michel L., Bonnardot V., Guérin-Dubrana L., Delmas C.E.L. (2024) Plant Pathology, 73: 2344–2358.. Available from: https://doi.org/10.1111/ppa.13975
27. Large gradient of susceptibility to esca disease revealed by long-term monitoring of 46 grapevine cultivars in a common garden vineyard. Gastou P., Destrac-Irvine A., Arcens C., Courchinoux E., This P., Van Leeuwen C. Delmas C.E.L. (2024) OENO One, 58(2). https://doi.org/10.20870/oeno-one.2024.58.2.8043 #OPEN ACCESS
26. Monitoring the phenology of plant pathogenic fungi: why and how? Delmas C.E.L., Bancal M-O., Leyronas C., Robin M-H., Vidal T., Launay M. (2024) Biological Reviews, 99: 1075-1084. https://doi: 10.1111/brv.13058
25. Logistic modeling of summer expression of esca symptoms in tolerant and susceptible cultivars in Bordeaux vineyards. Lecomte P., Bénétreau C., Diarra B., Meziani Y., Delmas C.E.L., Fermaud M. (2024) Oeno One, 58(1). https://doi.org/10.20870/oeno-one.2024.58.1.7571 #OPEN ACCESS
24. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. Torres-Ruiz, J.M.; Cochard, H.; Delzon, S.; Boivin, T.; Burlett, R.; Cailleret, M.; Corso, D.; Delmas, C.E.L.; de Caceres, M. ; Diaz-Espejo , A. ; Fernandez-Conradi, P.; Guillemot, J.; Lamarque, L.; Limousin, J.-M.; Mantova, M. ; Mencuccini, M.; Morin, X.; Pimont, F.; Resco de Dios, V.; Ruffault, J.; Trueba, S.; & Martin-StPaul, N. (2024) New Phytologist, 241: 984–999. https://doi.org/10.1111/nph.19463 #OPEN ACCESS
23. Grapevine resilience mechanisms to esca: investigating stem radial growth, xylem development, and physiological adaptations. Dell'Acqua N., Gambetta G.A., Delzon S., Ferrer N., Lamarque L.J., Saurin N., Theodore P., Delmas C.E.L. (2024) Annals of Botany, 133 (2), 321–336, https://doi.org/10.1093/aob/mcad188
2023
22. Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Lamarque L.J., Delmas C.E.L., Charrier G., Burlett R., Dell’Acqua N., Pouzoulet J., Gambetta G.A., Delzon S. (2023) Scientific Reports, 13, 7724. https://doi.org/10.1038/s41598-023-34224-6 #OPEN ACCESS
21. Esca grapevine disease involves leaf hydraulic failure and represents a unique senescence program. Bortolami G., Ferrer N., Baumgartner K., Delzon S., Gramaje D., Lamarque L.J., Romanazzi G., Gambetta G.A., Delmas C.E.L. (2023) Tree Physiology, 43(3), 441–451 https://doi.org/10.1093/treephys/tpac133, PDF
2022
20. Fungal metabarcoding data for two grapevine varieties (Regent and Vitis vinifera L. cv. Cabernet-Sauvignon) inoculated with powdery mildew (Erysiphe necator) under drought conditions. Vacher C., Francioni C., Michel M., Fort T., Faivre d'Arcier J., Chancerel E., Delmotte F., Delmas C.E.L. (2022) Phytobiomes Journal, 6 : 358-367. https://doi.org/10.1094/PBIOMES-06-22-0037-A #OPEN ACCESS
2021
19. Grapevines under drought do not express esca leaf symptoms. Bortolami G., Gambetta G.A., Cassan C., Dayer S., Farolfi E., Ferrer N., Gibon, Y., Jolivet J., Lecomte P., Delmas C.E.L. (2021) Proceedings of the National Academy of Sciences, 118 (43) e2112825118; https://doi.org/10.1073/pnas.2112825118
18. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. Bortolami G., Farolfi E., Badel E., Burlett R., Cochard H., Ferrer N., King A., Lamarque L.J., Lecomte P., Marchesseau-Marchal M., Pouzoulet J., Torres-Ruiz J.M., Trueba S., Delzon S., Gambetta G.A., Delmas C.E.L. (2021) Journal of Experimental Botany, 72, 3914–3928. LINK
2020
17. Behind the Curtain of the Compartmentalization Process: Exploring How Xylem Vessel Diameter Impacts Vascular Pathogen Resistance. Pouzoulet J., Rolshausen P.E., Charbois R., Chen J., Guillaumie S., Ollat N., Gambetta G.A., Delmas C.E.L. (2020) Plant, Cell & Environment, 43, 2782–2796. doi: 10.1111/pce.13848. Link, PDF
16. Evolutionary constraints and adaptation shape the size and colour of rainforest fruits and flowers at continental scale. Delmas C.E.L., Kooyman R.M., Rossetto M. (2020) Global Ecology and Biogeography, 29: 830–841. https://doi. org/10.1111/geb.13065 Link, PDF
2019
15. Exploring the hydraulic failure hypothesis of esca leaf symptom formation. Bortolami G, Gambetta GA, Delzon S, Lamarque LJ, Pouzoulet J, Badel E, Burlett R, Charrier G, Cochard H, Dayer S, Jansen S, King A, Lecomte P, Lens F, Torres-Ruiz JM, Delmas C.E.L. (2019) Plant Physiology, 181: 1163-1174; DOI: 10.1104/pp.19.00591 Link , PDF #OPEN ACCESS
2018
14. Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world’s top wine regions. Charrier G, Delzon S, Domec JC, Zhang L, Delmas C.E.L., Merlin I, Corso D, Ojeda H, Ollat N, Prieto JA, Scholach T, Skinner P, van Leeuwen K, Gambetta GA. (2018) Science Advances, 4: eaao6969 Link #OPEN ACCESS
2017
13. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Delmas C.E.L.*, Dussert Y*, Delière L, Couture C, Mazet ID, Richart Cervera S., Delmotte F. (2017) Molecular Ecology, 26: 1936:1951 Link, PDF, Dataset; *Equal contribution
2016
12. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Charrier G, Torres-Ruiz JM, Badel E, Burlett R, Choat B, Cochard H, Delmas C.E.L., Domec JC, Jansen S, King A, Lenoir N, Martin-StPaul N, Gambetta GA, Delzon S. (2016) Plant Physiology, 172: 1657-1668 Link, #OPEN ACCESS
11. Herbaceous angiosperms are not more vulnerable to drought-induced embolism than angiosperm tree. Lens F., Picon-Cochard C., Delmas C.E.L., Signarbieux C., Buttler A., Cochard H., Jansen S., Chauvin T., Chacon Doria L., del Arco M., Delzon S. (2016) Plant Physiology, 172: 661–667. Link, #OPEN ACCESS
10. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Delmas C.E.L., Fabre F., Jolivet J., Mazet I.D., Richart Cervera S., Delière L., Delmotte F. (2016) Evolutionary Applications, 9 : 709-725 Link, Dataset, #OPEN ACCESS, Press release (in french)
9. Pollen transfer in fragmented plant populations: insight from the pollen loads of pollinators and stigmas in a mass-flowering species. Delmas C.E.L., Fort T.L.C. Escaravage N., Pornon A. (2016) Ecology and Evolution, 6: 5663-5673. Link, #OPEN ACCESS
2015
8. Relative impact of mate versus pollinator availability on pollen limitation and outcrossing rates in a mass-flowering species. Delmas C.E.L., Escaravage N., Cheptou P-O, Charrier O., Ruzafa S., Winterton P. and Pornon A. (2015) Plant Biology, 17: 209-218. Link
2014
7. Simultaneous quantification of sporangia and zoospores in a biotrophic oomycete with an automatic particle analyzer: disentangling dispersal and infection potentials. Delmas C.E.L.,, Mazet I.D., Jolivet J., Delière L., Delmotte F. (2014) Journal of Microbiological Methods 107: 169-175. Link
6. High lifetime inbreeding depression counteracts the reproductive assurance benefit of selfing in a mass-flowering shrub. Delmas C.E.L., Cheptou P-O, Escaravage N. and Pornon A. (2014) BMC Evolutionary Biology 14:243. Link, #OPEN ACCESS
5. Massive floral display affects insect visits but not pollinator-mediated pollen transfer in Rhododendron ferrugineum. Delmas C.E.L., Escaravage N., Pornon A. (2014) Plant Biology 16: 234-243. Link
2013
4. Development of 18 microsatellite markers in Rhododendron ferrugineum (Ericaceae) for investigating genetic structure at margins. Charrier O, Delmas C.E.L., Pornon A., Escaravage N. (2013) Conservation Genetics Resources 5: 473-477. Link
2011
3. Isolation and characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae) using pyrosequencing technology. Delmas C.E.L., Lhuillier E., Pornon A. Escaravage N. (2011) American Journal of Botany 98: e120-e122. Link
2. A meta-analysis of the ecological significance of density in tree invasions. Delmas C.E.L., Delzon S. and Lortie C.J. (2011) Community Ecology 12:171-178. Link, Dataset
1. Detecting the footprint of changing atmospheric nitrogen deposition on acid grasslands in the context of climate change. Gaudnik C., Corcket E., Clément B., Delmas C.E.L., Gombert-Courvoisier S., Muller S., Stevens C. J. and Alard D. (2011) Global Change Biology 17: 3351-3365. Link
Technical articles
6. Drought tolerance in grapevine involves multiple interacting physiological mechanisms. Gambetta, G. A., Delmas, C. E.L., Marguerit, E., Ollat, N., Saint Cast, C., van Leeuwen, C., & Delzon, S. (2024). IVES Technical Reviews, vine and wine. https://doi.org/10.20870/IVES-TR.2024.8354 (also available in 5 other languages)
5. Gradient of grapevine varietal susceptibility to esca. Gastou, P., Etienne, L., Guerin-Dubrana, L., & Delmas, C. (2024). IVES Technical Reviews, vine and wine. https://doi.org/10.20870/IVES-TR.2024.8300 (also available in 5 other languages)
4. En quoi la diversité génétique des porte-greffes peut-elle permettre de lutter contre les dépérissements ? Marguerit E., Delmas C., Dewasme C., Lauvergeat V., Ollat N. (2023) Union Girondine des Vins de Bordeaux.
3. One or the other: under drought, grapevines do not express esca leaf symptoms. Bortolami G., Gambetta G., Delmas C.E.L. (2023) IVES Technical Reviews, https://doi.org/10.20870/IVES-TR.2023.7502 (also available in 5 other languages)
2. Impacts de l’esca sur le transport de l’eau de la vigne. Bortolami G., Delmas C. (2022) Revue des Œnologues, 182, 21-23.
Un projet transdisciplinaire pour comprendre les mécanismes sous-jacents au dépérissement de la vigne: PHYSIOPATH. Delmas C. (2017) Revue des Œnologues, 165HS, 16-17.
Book chapters
van Leeuwen C., Simonneau T., Delmas C. (2024) Effets de l’élévation des températures et du déficit hydrique sur la vigne. In: Ollat, N., & Touzard, J. M. (2024). Vigne, vin et changement climatique. Quae.
Theses
Delmas C. (2021) « Adaptation des agents pathogènes et physiopathologie de la vigne face aux changements de l’environnement », Habilitation Thesis, Université de Bordeaux. https://hal.inrae.fr/tel-04066884
Delmas C. (2012) "Interactions plantes-pollinisateurs et reproduction sexuée en habitat fragmenté. Le cas d’un arbuste à floraison massive", PhD Thesis, Université de Toulouse. https://hal.inrae.fr/tel-02810733