Here is my Google Scholar
Here is my Google Scholar
Manganini, C., Corsi, E. A., & Primiero, G. (2026). Data Speak but Sometimes Lie: A Game-Theoretic Approach to Data Bias and Algorithmic Fairness. International Journal of Approximate Reasoning, 109608. https://doi.org/10.1016/j.ijar.2025.109608.
Manganini, C., Primiero, G. (2026). Defining Formal Validity Criteria for Machine Learning Models. In: Durán, J.M., Pozzi, G. (eds) Philosophy of Science for Machine Learning. Synthese Library, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-032-03083-2_14.
Manganini, C. (2025) A Sceptical Paradox for Computational Artefacts. Philosophical Inquiries. Forthcoming.
Buda, A. G., Manganini, C., & Primiero, G. (2025). A Philosophical Framework for Data-Driven Miscomputations. Philosophies, 10(4), 88. https://doi.org/10.3390/philosophies10040088.
Manganini, C., Primiero, G. (2024). Reasoning With and About Bias. In: Hosni, H., Landes, J. (eds) Perspectives on Logics for Data-driven Reasoning. Logic, Argumentation & Reasoning, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-77892-6_7.
Heilmann, X., Manganini, C., Cerrato, M. & Belle, V.. (2025). A Neurosymbolic Approach to Counterfactual Fairness. Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning, in Proceedings of Machine Learning Research. https://proceedings.mlr.press/v284/heilmann25a.html.
Manganini, C., & Primiero, G. (2023). Reasoning with bias. In R. Calegari, A. Aler Tubella, G. González-Castañe, V. Dignum, & M. Milano (Eds.), Proceedings of the 1st Workshop on Fairness and Bias in AI co-located with 26th European Conference on Artificial Intelligence (ECAI 2023), Kraków, Poland, October 1st, 2023 (CEUR Workshop Proceedings, Vol. 3523). CEUR-WS.org. https://ceur-ws.org/Vol-3523/paper4.pdf
Buda, A. G., Coraglia, G., Genco, F. A., Manganini, C., & Primiero, G. (2024). Bias amplification chains in ML-based systems with an application to credit scoring. In G. Coraglia, F. A. D’Asaro, A. Dyoub, F. A. Lisi, & G. Primiero (Eds.), Proceedings of the 3rd Workshop on Bias, Ethical AI, Explainability and the role of Logic and Logic Programming co-located with the 23rd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2024), Bolzano, Italy, November 26, 2024 (CEUR Workshop Proceedings, Vol. 3881, pp. 77–86). CEUR-WS.org. https://ceur-ws.org/Vol-3881/paper9.pdf
Algorithmic Fairness as a Repair Practice
Bias and Miscomputation. A Philosophical and Formal Framework for Machine Learning Unfairness (PhD Thesis)
A Neurosymbolic Approach to Counterfactual Fairness, extended version (joint work with Xenia Heilmann, Mattia Cerrato, and Vaishak Belle)