This is a list of my preprints and publications in reverse chronological order.
They can be found also on Google Scholar. Authors are listed in alphabetical order except for publications with [*].
Cecilia Pagliantini, Federico Vismara. Adaptive hyper-reduction of non-sparse operators: application to parametric particle-based kinetic plasma models. Journal of Computational Physics 549 (2026), 114609. ArXiv e-print: 2504.00604.
Cecilia Pagliantini. Geometric low-rank approximation of the Zeitlin model of incompressible fluids on the sphere. SIAM Journal on Numerical Analysis, Vol. 63, No. 6 (2025), pp. 2221-2248. ArXiv e-print: 2412.08182.
[*] Alessandro Franco, Cecilia Pagliantini. Forecasting Electricity Demand in Renewable-Integrated Systems: A Case Study from Italy Using Recurrent Neural Networks. Electricity 2025, 6(2), 30.
[*] Francesco A. B. Silva, Cecilia Pagliantini, Karen Veroy. An adaptive hierarchical ensemble Kalman filter with reduced basis models. SIAM/ASA Journal on Uncertainty Quantification, Vol. 13, No. 1 (2025), pp. 140-170. ArXiv e-print: 2404.09907
Olga Mula, Cecilia Pagliantini, Federico Vismara. Dynamical approximation and sensor placement for filtering problems. SIAM Journal on Scientific Computing, Vol. 47, No. 1 (2025), pp. A403-A429. ArXiv e-print: 2312.12353.
Cecilia Pagliantini, Federico Vismara. Fully adaptive structure-preserving hyper-reduction of parametric Hamiltonian systems. SIAM Journal on Scientific Computing, 47(1) (2025), pp. A124-A152. ArXiv e-print: 2308.16547.
Jan S. Hesthaven, Cecilia Pagliantini, Nicolo Ripamonti. Adaptive symplectic model order reduction of parametric Vlasov-Poisson equation. Mathematics of Computation, 93 (2024), no. 347, pp. 1153-1202. ArXiv e-print: 2201.05555.
[*] Francesco A. B. Silva, Cecilia Pagliantini, Martin A. Grepl, Karen Veroy. A reduced basis ensemble Kalman method. International Journal on Geomathematics 14(1), 24 (2023).
Cecilia Pagliantini, Federico Vismara. Gradient-preserving hyper-reduction of nonlinear dynamical systems via discrete empirical interpolation. SIAM Journal on Scientific Computing, 45(5) (2023), pp. A2725-A2754. ArXiv e-print: 2206.01792.
[*] Cecilia Pagliantini, Gian Luca Delzanno, Stefano Markidis. Physics-based adaptivity of a spectral method for the Vlasov-Poisson equations based on the asymmetrically-weighted Hermite expansion in velocity space. Journal of Computational Physics 488 (2023), 112252. Arxiv e-print: 2208.14373.
[*] Cecilia Pagliantini, Gianmarco Manzini, Oleksandr Koshkarov, Gian Luca Delzanno, Vadim Roytershteyn. Energy-conserving explicit and implicit time integration methods for the multi-dimensional Hermite-DG discretization of the Vlasov-Maxwell equations. Computer Physics Communications 284 (2023), 108604. ArXiv e-print: 2110.11511.
Jan S. Hesthaven, Cecilia Pagliantini, Gianluigi Rozza. Reduced basis methods for time-dependent problems. Acta Numerica 31 (2022), 265-345.
Jan S. Hesthaven, Cecilia Pagliantini, Nicolo Ripamonti. Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM Mathematical Modelling and Numerical Analysis 56 (2022), no. 2, 617-650. Arxiv e-print: 2007.13153.
Jan S. Hesthaven, Cecilia Pagliantini, Nicolo Ripamonti. Structure-preserving model order reduction of Hamiltonian systems. Proc. Int. Cong. Math. 2022, Vol. 7, pp. 5072--5097. ArXiv e-print: 2109.12367.
[*] Oleksandr Koshkarov, Gianmarco Manzini, Gian Luca Delzanno, Cecilia Pagliantini, Vadim Roytershteyn. The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov-Maxwell equations. Computer Physics Communications 264 (2021), 107866.
Cecilia Pagliantini. Dynamical reduced basis methods for Hamiltonian systems. Numerische Mathematik 148 (2021), no. 2, 409–448. ArXiv e-print: 2008.07427.
Jan S. Hesthaven, Cecilia Pagliantini. Structure-preserving reduced basis methods for Poisson systems. Mathematics of Computation 90 (2021), no. 330, 1701-1740.
Blanca Ayuso de Dios, Ralf Hiptmair, Cecilia Pagliantini. Auxiliary space preconditioner for a DG discretization of H(curl;\Omega)-elliptic problem on hexahedral meshes. Domain decomposition methods in science and engineering XXIV, 223–231, Lect. Notes Comput. Sci. Eng., 125, Springer, Cham, 2018.
Ralf Hiptmair, Cecilia Pagliantini. Splitting-based structure preserving discretizations for magnetohydrodynamics. SMAI Journal of Computational Mathematics 4 (2018), 225-257.
Blanca Ayuso de Dios, Ralf Hiptmair, Cecilia Pagliantini. Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients. IMA Journal of Numerical Analysis 37 (2017), no. 2, 646-686.
Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete and Continuous Dynamical Systems - S, 9 (2016), no. 1, 185-214.
Damiano Lombardi, Cecilia Pagliantini. Conformal variational discretisation of infinite dimensional Hamiltonian systems with gradient flow dissipation. 2024. ArXiv e-print: 2412.06310.
Paolo Cifani, Klas Modin, Cecilia Pagliantini, Milo Viviani. Symplectic Isospectral Runge-Kutta Methods as Lie group methods. 2025. ArXiv e-print: 2509.20620.
Cecilia Pagliantini, Shobhit Jain. Nonlinear Model Reduction From Equations and Data. (2024). Editorial of the Special Collection: Nonlinear Model Reduction From Equations and Data. Chaos 1 September 2024; 34 (9): 090401.
Cecilia Pagliantini. Speeding up the simulation of parametric Hamiltonian systems while preserving their physical properties. ECCOMAS Newsletter July 2023. Available at https://www.eccomas.org/publications/newsletters/
Blanca Ayuso de Dios, Ralf Hiptmair, Cecilia Pagliantini. Auxiliary space preconditioners for discontinuous Galerkin interior penalty methods for H(curl;\Omega)-elliptic problems. Oberwolfach Report 43/2015.