CAUSALI-T-AI
CAUSALI-T-AI
Publications
2025
Complete Characterization for Adjustment in Summary Causal Graphs of Time Series
C. Yvernes, E. Devijver, E. Gaussier (2025). UAI
DCILP: A Distributed Approach for Large-Scale Causal Structure Learning
S. Dong, M. Sebag, K. Uemura, A. Fujii, S. Chang, Y. Koyanagi, K. Maruhashi (2025) AAAI
2024
Identifiability of total effects from abstractions of time series causal graphs,
C.K. Assaad, E. Devijver, E. Gaussier, G. Goessler, A. Meynaoui (2024). UAI
Causal Discovery from Time Series with Hybrids of Constraint-Based and Noise-Based Algorithms,
D. Bystrova, C.K. Assaad, J. Arbel, E. Devijver, E. Gaussier, W. Thuillier (2024). TMLR
On the Fly Detection of Root Causes from Observed Data with Application to IT Systems,
L. Zan, A. Ait-Bachir, C. K. Assaad, E. Devijver, E. Gaussier (2024). CIKM
Difference graph over two populations: Implicit Difference Inference algorithm,
Daria Bystrova, Emilie Devijver, Vardan Manucharian, Julie Mondet, Pascal Mossuz (2024), 9th Causal Inference Workshop at UAI 2024