Publications by topics

For any additional information, do not hesitate to send me an email : eric.castet@univ-amu.fr

Low Vision and visual deficits (mostly in relation to eye movements)

(studies on Reading processes are indicated by * )

Calabrèse A., Fournet V., Dours S., Matonti F., Castet E., and Kornprobst P. (2023). A new vessel-based method to estimate automatically the position of the non-functional fovea on altered retinography from maculopathies. Translational Vision Science & Technology, 12(7), 9. https://doi.org/10.1167/tvst.12.7.9

*Sauvan, L., Stolowy, N., Aguilar, C., François, T., Gala, N., Matonti, F., Castet, E., Calabrèse, A., 2020. The inhibitory effect of word neighborhood size when reading with central field loss is modulated by word predictability and reading proficiency. Scientific Reports 10, 21792. https://doi.org/10.1038/s41598-020-78420-0

*Denis-Noël, A., Pattamadilok, C., Castet, E. & Colé, P. (2020). Activation time-course of phonological code in silent word recognition in adult readers with and without dyslexia. Accepted in Annals of Dyslexia. [pdf] or [Shared version].

*Castet, E., Descamps, M., Denis-Noël, A., & Colé, P. (2019). Dyslexia Research and the Partial Report Task: A First Step toward Acknowledging Iconic and Visual Short-term Memory. Scientific Studies of Reading, 1–11. [pdf].

*Bernard J-B & Castet E. (2019). The optimal use of non-optimal letter information in foveal and parafoveal word recognition, Vision Research, 155, 44–61. [pdf] 

*Stolowy, N., Calabrèse, A., Sauvan, L., Aguilar, C., François, T., Gala, N., Matonti, F., Castet, E. (2019). The influence of word frequency on word reading speed when individuals with macular diseases read text. Vision Research, 155, 1-10. [pdf]

Calabrèse, A., Aguilar, C., Faure, G., Matonti, F., Hoffart, L., & Castet, E. (2018). A Vision Enhancement System to Improve Face Recognition with Central Vision Loss. Optometry and Vision Science, 95(9), 738–746. [pdf]

*Aguilar, C., & Castet, E. (2017). Evaluation of a gaze-controlled vision enhancement system for reading in visually impaired people. PLOS ONE, 12(4), e0174910. https://doi.org/10.1371/journal.pone.0174910 

*Calabrèse, A., Bernard, J.-B., Faure, G., Hoffart, L., Castet, E., (2016). Clustering of Eye Fixations: A New Oculomotor Determinant of Reading Speed in Maculopathy. Investigative Ophthalmology & Visual Science 57, 3192. https://doi.org/10.1167/iovs.16-19318

*Bernard J-B, Aguilar C, Castet E. (2016) A New Font, Specifically Designed for Peripheral Vision, Improves Peripheral Letter and Word Recognition, but Not Eye-Mediated Reading Performance. PLOS ONE;11(4):e0152506. https://doi.org/10.1371/journal.pone.0152506

*Calabrèse, A., Bernard, J.-B., Faure, G., Hoffart, L., & Castet, E. (2014). Eye movements and reading speed in macular disease: the shrinking perceptual span hypothesis requires and is supported by a mediation analysis. Investigative Ophthalmology & Visual Science, 55(6), 3638 3645. https://doi.org/10.1167/iovs.13-13408

*Bernard, J.-B., Calabrèse, A., & Castet, E. (2014) Role of syllable segmentation processes in peripheral word recognition. Vision research, 105 (0), 226-232. [pdf]

*Yao-N’Dré, M., Castet, E., & Vitu, F. (2014). Inter-word eye behaviour during reading is not invariant to character size: Evidence against systematic saccadic range error in reading. Visual Cognition, 22(3-4), 415 440.  [pdf] 

*Yao-N’dré, M., Castet, E., & Vitu, F. (2013). The Optimal Viewing Position effect in the lower visual field. Vision research, 76, 114 123.  [pdf] 

Castet, E., & Crossland, M. (2012). Quantifying eye stability during a fixation task: a review of definitions and methods. Seeing and perceiving, 25(5), 449-469. [pdf]

Aguilar, C. and Castet E. (2011). Gaze-contingent simulation of retinopathy: some potential pitfalls and remedies. Vision Res, 51(9): 997-1012.  [pdf] 

*Calabrèse, A., Bernard, J.-B., Hoffart, L., Faure, G., Barouch, F., Conrath, J., & Castet, E. (2011). Wet versus dry age-related macular degeneration in patients with central field loss: different effects on maximum reading speed. Invest Ophthalmol Vis Sci 52(5): 2417-24.  https://doi.org/10.1167/iovs.09-5056

*Calabrèse, A., Bernard, J.-B., Hoffart, L., Faure, G., Barouch, F., Conrath, J., & Castet, E. (2010). Small effect of interline spacing on reading speed in low vision patients with central field loss irrespective of scotoma size. Invest Ophthalmol Vis Sci, 51 (2), 1247-54. https://doi.org/10.1167/iovs.09-3682

*Scherlen, A.C., Bernard, J.B., Calabrese, A., & Castet, E. (2008). Page mode reading with simulated scotomas: oculo-motor patterns. Vision Res, 48 (18), 1870-1878.  [pdf]

*Bernard, J-B, Scherlen, A-C & Castet, E. (2007). Page mode reading with simulated scotomas: A modest effect of interline spacing on reading speed. Vision Research, 47 (28), 3447-3459.  [pdf] 


Reading (with and without eye movements) in normally-sighted subjects + visuo-motor control.

(Modelling studies are indicated by + )

Barbaroux, M., Norena, A., Rasamimanana, M., Castet, E., & Besson, M. (2021). From Psychoacoustics to Brain Waves: A Longitudinal Approach To Novel Word Learning. Journal of Cognitive Neuroscience, 33(1), 8–27. https://doi.org/10.1162/jocn_a_01629

Albrengues, C., Lavigne, F., Aguilar, C., Castet, E., & Vitu, F. (2019). Linguistic processes do not beat visuo-motor constraints, but they modulate where the eyes move regardless of word boundaries: Evidence against top-down word-based eye-movement control during reading. PLOS ONE, 14(7), e0219666. [pdf] 

+Bernard J-B & Castet E. (2019). The optimal use of non-optimal letter information in foveal and parafoveal word recognition, Vision Research, 155, 44–61. [pdf] 

Vitu, F., Casteau, S., Adeli, H., Zelinsky, G. J., & Castet, E. (2017). The magnification factor accounts for the greater hypometria and imprecision of larger saccades: Evidence from a parametric human-behavioral study. Journal of Vision, 17(4), 2–2. https://doi.org/10.1167/17.4.2

+Bernard, J.-B., Moscoso Del Prado Martin, F., Montagnini, A., & Castet, E. (2008). A Model of Optimal Oculomotor Strategies in Reading for Normal and Damaged Visual Fields. Deuxième Conférence Française de Neurosciences Computationnelles, ”Neurocomp08”. https://hal.archives-ouvertes.fr/hal-00331554 [pdf] 


Stable perception of the world despite a non-coherent retinal inflow. 

Nicolas, G., Castet, E., Rabier, A., Kristensen, E., Dojat, M., & Guérin-Dugué, A. (2021). Neural correlates of intra-saccadic motion perception. Journal of Vision, 21(11), 19. https://doi.org/10.1167/jov.21.11.19

Duyck, M., Wexler, M., Castet, E., Collins, T. (2018). Motion Masking by Stationary Objects: A Study of Simulated Saccades. i-Perception 9, 2041669518773111. https://doi.org/10.1177/2041669518773111

Mathôt, S., Melmi, J.-B., & Castet, E. (2015). Intrasaccadic perception triggers pupillary constriction. PeerJ, 3, e1150. http://doi.org/10.7717/peerj.1150

Castet, E. (2010). Perception of intrasaccadic motion. In G. S. Masson & U. J. Ilg (Éd.), Dynamics of Visual Motion Processing: Neuronal, Behavioral and Computational Approaches (p. 213‑238). New York: Springer. [pdf]

Castet, E., Jeanjean, S. & Masson, S.J. (2002). Motion perception of saccade-induced retinal translation. Proceedings of the National Academy of Sciences USA, 99, 15159-63. [pdf]

Castet, E., Jeanjean, S. & Masson, G.S. (2001). ’Saccadic suppression’ : no need for an active extra-retinal mechanism. Trends in Neurosciences, 24, 317-318.[pdf]

Castet, E. & Masson, G. S. (2000). Motion perception during saccadic eye movements. Nature Neuroscience, 3, 177-183. [pdf]



Attention and ocular saccades

Filali-Sadouk, N., Castet, E., Olivier, E., & Zenon, A. (2010). Similar effect of cueing conditions on attentional and saccadic temporal dynamics. Journal of Vision, 10 (4), 1-13. [pdf] 

Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7(14):8, 1-16.  [pdf] 

Castet, E., Jeanjean, S., Montagnini, A., Laugier, D., & Masson, G. S. (2006). Dynamics of attentional deployment during saccadic programming. Journal of Vision, 6(3), 196-212. [pdf]

 

Low level vision and Attention

Castet, E., Descamps, M., Denis-Noël, A., Colé, P., (2017). Letter and symbol identification: No evidence for letter-specific crowding mechanisms. Journal of Vision 17, 2–2. https://doi.org/10.1167/17.11.2[pdf]

Barthelemy, F.V., Perrinet, L.U., Castet, E., & Masson, G.S. (2008). Dynamics of distributed 1D and 2D motion representations for short-latency ocular following. Vision Res, 48 (4), 501-522.

L. Hoffart, J. Conrath, F. Matonti, F. Galland, N. Wotawa, F. Chavane, E. Castet, B. Ridings, G. S. Masson. (2007). Retinotopic organization of the human visual cortex: a 3T fMRI study. J Fr. Ophtalmol., 30, 8, 830-836.

Montagnini, A., Mamassian, P., Perrinet, L., Castet, E., Masson, G.S. (2007) Bayesian modelling of dynamic motion integration. Journal of Physiology - Paris. 101/1-3, 64-77.

Masson, G. S. & Castet, E. (2002). Parallel motion processing for the initiation of short-latency ocular following in humans. Journal of Neuroscience, 22, 5149-63.

Castet, E., Keeble, D.T. & Verstraten, F.A.J. (2002). Nulling the motion aftereffect with dynamic random-dot stimuli : limitations and implications. Journal of Vision, 2(4), 302-311, 

Morgan, M. J. & Castet, E. (2002). High temporal frequency synchrony is insufficient for perceptual grouping. Proceedings of the Royal Society of London B, 269, 513-516.

Masson, G. S., Rybarczyk, Y., Castet, E. & Mestre, D. (2000). Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies. Visual Neuroscience, 17, 753-767.

Castet, E. & Zanker, J. (1999). Long-range interactions in the spatial integration of motion signals. Spatial Vision, 12, 287-307.

Castet, E., Charton V. & Dufour A. (1999). The extrinsic/intrinsic classification of 2D motion signals in the barberpole illusion. Vision Research, 39, 915-932.

Morgan, M. J., Ward, R. M. & Castet, E. (1998). Visual search for a tilted target : tests of spatial uncertainty models. Quarterly Journal of Experimental Psychology, 51A, 347-370.

Morgan, M. J. & Castet, E. (1997). The aperture problem in stereopsis. Vision Research, 37, 2737-2744.

Castet, E. & Wuerger, S. (1997). Perception of moving lines: interactions between local perpendicular signals and 2D motion signals. Vision Research, 37, 705-720.

Castet, E. & Morgan, M. J. (1996). Apparent speed of type I symmetrical plaids. Vision Research, 36, 223-232.

Morgan M. J. & Castet, E. (1995). Stereoscopic depth perception at high velocities. Nature, 378, 380-383.

Castet, E. (1995). Apparent speed of sampled motion. Vision Research, 35, 1375-1384.

Castet, E. (1994). Effect of the ISI on the visible persistence of stimuli in apparent motion. Vision Research, 34, 2103-2114.

Castet, E., Lorenceau J., Shiffrar M. & Bonnet C. (1993). Perceived speed of moving lines depends on orientation, length, speed and luminance. Vision Research, 33, 1921-1936.

Castet, E., Lorenceau J. & Bonnet C. (1993). The inverse intensity effect is not lost with stimuli in apparent motion. Vision Research, 33, 1697-1708.

Lorenceau J., Shiffrar M., Wells N. & Castet, E. (1993). Different motion sensitive units are involved in recovering the direction of moving lines. Vision Research, 33, 1207-1217.