Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus. The former concerns instantaneous rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit.[1]

Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz.[2][3] Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in science, engineering, and social science.[4]


Calculus 2 Pdf Free Download


Download File 🔥 https://urloso.com/2y5yM9 🔥



In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus is Latin for "small pebble" (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine. Because such pebbles were used for counting out distances,[5] tallying votes, and doing abacus arithmetic, the word came to mean a method of computation. In this sense, it was used in English at least as early as 1672, several years before the publications of Leibniz and Newton.[6]

In addition to differential calculus and integral calculus, the term is also used for naming specific methods of calculation and related theories that seek to model a particular concept in terms of mathematics. Examples of this convention include propositional calculus, Ricci calculus, calculus of variations, lambda calculus, and process calculus. Furthermore, the term "calculus" has variously been applied in ethics and philosophy, for such systems as Bentham's felicific calculus, and the ethical calculus.

Modern calculus was developed in 17th-century Europe by Isaac Newton and Gottfried Wilhelm Leibniz (independently of each other, first publishing around the same time) but elements of it first appeared in ancient Egypt and later Greece, then in China and the Middle East, and still later again in medieval Europe and India.

Johannes Kepler's work Stereometrica Doliorum formed the basis of integral calculus.[20] Kepler developed a method to calculate the area of an ellipse by adding up the lengths of many radii drawn from a focus of the ellipse.[21]

The formal study of calculus brought together Cavalieri's infinitesimals with the calculus of finite differences developed in Europe at around the same time. Pierre de Fermat, claiming that he borrowed from Diophantus, introduced the concept of adequality, which represented equality up to an infinitesimal error term.[22] The combination was achieved by John Wallis, Isaac Barrow, and James Gregory, the latter two proving predecessors to the second fundamental theorem of calculus around 1670.[23][24]

The product rule and chain rule,[25] the notions of higher derivatives and Taylor series,[26] and of analytic functions[27] were used by Isaac Newton in an idiosyncratic notation which he applied to solve problems of mathematical physics. In his works, Newton rephrased his ideas to suit the mathematical idiom of the time, replacing calculations with infinitesimals by equivalent geometrical arguments which were considered beyond reproach. He used the methods of calculus to solve the problem of planetary motion, the shape of the surface of a rotating fluid, the oblateness of the earth, the motion of a weight sliding on a cycloid, and many other problems discussed in his Principia Mathematica (1687). In other work, he developed series expansions for functions, including fractional and irrational powers, and it was clear that he understood the principles of the Taylor series. He did not publish all these discoveries, and at this time infinitesimal methods were still considered disreputable.[28]

These ideas were arranged into a true calculus of infinitesimals by Gottfried Wilhelm Leibniz, who was originally accused of plagiarism by Newton.[29] He is now regarded as an independent inventor of and contributor to calculus. His contribution was to provide a clear set of rules for working with infinitesimal quantities, allowing the computation of second and higher derivatives, and providing the product rule and chain rule, in their differential and integral forms. Unlike Newton, Leibniz put painstaking effort into his choices of notation.[30]

Since the time of Leibniz and Newton, many mathematicians have contributed to the continuing development of calculus. One of the first and most complete works on both infinitesimal and integral calculus was written in 1748 by Maria Gaetana Agnesi.[35][36]

In calculus, foundations refers to the rigorous development of the subject from axioms and definitions. In early calculus, the use of infinitesimal quantities was thought unrigorous and was fiercely criticized by several authors, most notably Michel Rolle and Bishop Berkeley. Berkeley famously described infinitesimals as the ghosts of departed quantities in his book The Analyst in 1734. Working out a rigorous foundation for calculus occupied mathematicians for much of the century following Newton and Leibniz, and is still to some extent an active area of research today.[37]

Several mathematicians, including Maclaurin, tried to prove the soundness of using infinitesimals, but it would not be until 150 years later when, due to the work of Cauchy and Weierstrass, a way was finally found to avoid mere "notions" of infinitely small quantities.[38] The foundations of differential and integral calculus had been laid. In Cauchy's Cours d'Analyse, we find a broad range of foundational approaches, including a definition of continuity in terms of infinitesimals, and a (somewhat imprecise) prototype of an (, )-definition of limit in the definition of differentiation.[39] In his work Weierstrass formalized the concept of limit and eliminated infinitesimals (although his definition can validate nilsquare infinitesimals). Following the work of Weierstrass, it eventually became common to base calculus on limits instead of infinitesimal quantities, though the subject is still occasionally called "infinitesimal calculus". Bernhard Riemann used these ideas to give a precise definition of the integral.[40] It was also during this period that the ideas of calculus were generalized to the complex plane with the development of complex analysis.[41]

In modern mathematics, the foundations of calculus are included in the field of real analysis, which contains full definitions and proofs of the theorems of calculus. The reach of calculus has also been greatly extended. Henri Lebesgue invented measure theory, based on earlier developments by mile Borel, and used it to define integrals of all but the most pathological functions.[42] Laurent Schwartz introduced distributions, which can be used to take the derivative of any function whatsoever.[43]

Limits are not the only rigorous approach to the foundation of calculus. Another way is to use Abraham Robinson's non-standard analysis. Robinson's approach, developed in the 1960s, uses technical machinery from mathematical logic to augment the real number system with infinitesimal and infinite numbers, as in the original Newton-Leibniz conception. The resulting numbers are called hyperreal numbers, and they can be used to give a Leibniz-like development of the usual rules of calculus.[44] There is also smooth infinitesimal analysis, which differs from non-standard analysis in that it mandates neglecting higher-power infinitesimals during derivations.[37] Based on the ideas of F. W. Lawvere and employing the methods of category theory, smooth infinitesimal analysis views all functions as being continuous and incapable of being expressed in terms of discrete entities. One aspect of this formulation is that the law of excluded middle does not hold.[37] The law of excluded middle is also rejected in constructive mathematics, a branch of mathematics that insists that proofs of the existence of a number, function, or other mathematical object should give a construction of the object. Reformulations of calculus in a constructive framework are generally part of the subject of constructive analysis.[37]

While many of the ideas of calculus had been developed earlier in Greece, China, India, Iraq, Persia, and Japan, the use of calculus began in Europe, during the 17th century, when Newton and Leibniz built on the work of earlier mathematicians to introduce its basic principles.[11][28][45] The Hungarian polymath John von Neumann wrote of this work,

The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics, and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.[46]

Calculus is usually developed by working with very small quantities. Historically, the first method of doing so was by infinitesimals. These are objects which can be treated like real numbers but which are, in some sense, "infinitely small". For example, an infinitesimal number could be greater than 0, but less than any number in the sequence 1, 1/2, 1/3, ... and thus less than any positive real number. From this point of view, calculus is a collection of techniques for manipulating infinitesimals. The symbols d x {\displaystyle dx} and d y {\displaystyle dy} were taken to be infinitesimal, and the derivative d y / d x {\displaystyle dy/dx} was their ratio.[37]

The infinitesimal approach fell out of favor in the 19th century because it was difficult to make the notion of an infinitesimal precise. In the late 19th century, infinitesimals were replaced within academia by the epsilon, delta approach to limits. Limits describe the behavior of a function at a certain input in terms of its values at nearby inputs. They capture small-scale behavior using the intrinsic structure of the real number system (as a metric space with the least-upper-bound property). In this treatment, calculus is a collection of techniques for manipulating certain limits. Infinitesimals get replaced by sequences of smaller and smaller numbers, and the infinitely small behavior of a function is found by taking the limiting behavior for these sequences. Limits were thought to provide a more rigorous foundation for calculus, and for this reason, they became the standard approach during the 20th century. However, the infinitesimal concept was revived in the 20th century with the introduction of non-standard analysis and smooth infinitesimal analysis, which provided solid foundations for the manipulation of infinitesimals.[37] 17dc91bb1f

mht cet cut off list 2022 pdf download

apc economics class 12 pdf download

can i download office 365 on chromebook

free football games download for mobile

jason derulo songs download mp4