A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor (FET), uses only one kind of charge carrier. A bipolar transistor allows a small current injected at one of its terminals to control a much larger current flowing between the terminals, making the device capable of amplification or switching.

By convention, the direction of current on diagrams is shown as the direction that a positive charge would move. This is called conventional current. However, current in metal conductors is generally[a] due to the flow of electrons. Because electrons carry a negative charge, they move in the direction opposite to conventional current. On the other hand, inside a bipolar transistor, currents can be composed of both positively charged holes and negatively charged electrons. In this article, current arrows are shown in the conventional direction, but labels for the movement of holes and electrons show their actual direction inside the transistor.


Bipolar Junction Transistor Pdf Download


Download šŸ”„ https://tiurll.com/2y7OAb šŸ”„



BJTs exist as PNP and NPN types, based on the doping types of the three main terminal regions. An NPN transistor comprises two semiconductor junctions that share a thin p-doped region, and a PNP transistor comprises two semiconductor junctions that share a thin n-doped region. N-type means doped with impurities (such as phosphorus or arsenic) that provide mobile electrons, while p-type means doped with impurities (such as boron) that provide holes that readily accept electrons.

Charge flow in a BJT is due to diffusion of charge carriers (electrons and holes) across a junction between two regions of different charge carrier concentration. The regions of a BJT are called emitter, base, and collector.[b] A discrete transistor has three leads for connection to these regions. Typically, the emitter region is heavily doped compared to the other two layers, and the collector is doped more lightly (typically ten times lighter[2]) than the base. By design, most of the BJT collector current is due to the flow of charge carriers injected from a heavily doped emitter into the base where they are minority carriers (electrons in NPNs, holes in PNPs) that diffuse toward the collector, so BJTs are classified as minority-carrier devices.

The explanation for collector current is the concentration gradient of minority carriers in the base region.[3][4][5] Due to low-level injection (in which there are much fewer excess carriers than normal majority carriers) the ambipolar transport rates (in which the excess majority and minority carriers flow at the same rate) is in effect determined by the excess minority carriers.

Bipolar transistors, and particularly power transistors, have long base-storage times when they are driven into saturation; the base storage limits turn-off time in switching applications. A Baker clamp can prevent the transistor from heavily saturating, which reduces the amount of charge stored in the base and thus improves switching time.

The common-emitter current gain is represented by F or the h-parameter hFE; it is approximately the ratio of the collector's direct current to the base's direct current in forward-active region. (The F subscript is used to indicate the forward-active mode of operation.) It is typically greater than 50 for small-signal transistors, but can be smaller in transistors designed for high-power applications. Both injection efficiency and recombination in the base reduce the BJT gain.

BJTs consists of three differently doped semiconductor regions: the emitter region, the base region and the collector region. These regions are, respectively, p type, n type and p type in a PNP transistor, and n type, p type and n type in an NPN transistor. Each semiconductor region is connected to a terminal, appropriately labeled: emitter (E), base (B) and collector (C).

Early transistors were made from germanium but most modern BJTs are made from silicon. A significant minority are also now made from gallium arsenide, especially for very high speed applications (see HBT, below).

The heterojunction bipolar transistor (HBT) is an improvement of the BJT that can handle signals of very high frequencies up to several hundred GHz. It is common in modern ultrafast circuits, mostly RF systems.[7][8]

Although these regions are well defined for sufficiently large applied voltage, they overlap somewhat for small (less than a few hundred millivolts) biases. For example, in the typical grounded-emitter configuration of an NPN BJT used as a pulldown switch in digital logic, the "off" state never involves a reverse-biased junction because the base voltage never goes below ground; nevertheless the forward bias is close enough to zero that essentially no current flows, so this end of the forward active region can be regarded as the cutoff region.

The bipolar point-contact transistor was invented in December 1947[11] at the Bell Telephone Laboratories by John Bardeen and Walter Brattain under the direction of William Shockley. The junction version known as the bipolar junction transistor (BJT), invented by Shockley in 1948,[12] was for three decades the device of choice in the design of discrete and integrated circuits. Nowadays, the use of the BJT has declined in favor of CMOS technology in the design of digital integrated circuits. The incidental low performance BJTs inherent in CMOS ICs, however, are often utilized as bandgap voltage reference, silicon bandgap temperature sensor and to handle electrostatic discharge.

The germanium transistor was more common in the 1950s and 1960s but has a greater tendency to exhibit thermal runaway. Since germanium p-n junctions have a lower forward bias than silicon, germanium transistors turn on at lower voltage.

The hybrid-pi model is a popular circuit model used for analyzing the small signal and AC behavior of bipolar junction and field effect transistors. Sometimes it is also called Giacoletto model because it was introduced by L.J. Giacoletto in 1969. The model can be quite accurate for low-frequency circuits and can easily be adapted for higher-frequency circuits with the addition of appropriate inter-electrode capacitances and other parasitic elements.

Bipolar transistors can be combined with MOSFETs in an integrated circuit by using a BiCMOS process of wafer fabrication to create circuits that take advantage of the application strengths of both types of transistor.

The transistor parametersĀ  andĀ  characterize the current gain of the BJT. It is this gain that allows BJTs to be used as the building blocks of electronic amplifiers. The three main BJT amplifier topologies are:

Exposure of the transistor to ionizing radiation causes radiation damage. Radiation causes a buildup of 'defects' in the base region that act as recombination centers. The resulting reduction in minority carrier lifetime causes gradual loss of gain of the transistor.

In addition to normal breakdown ratings of the device, power BJTs are subject to a failure mode called secondary breakdown, in which excessive current and normal imperfections in the silicon die cause portions of the silicon inside the device to become disproportionately hotter than the others. The electrical resistivity of doped silicon, like other semiconductors, has a negative temperature coefficient, meaning that it conducts more current at higher temperatures. Thus, the hottest part of the die conducts the most current, causing its conductivity to increase, which then causes it to become progressively hotter again, until the device fails internally. The thermal runaway process associated with secondary breakdown, once triggered, occurs almost instantly and may catastrophically damage the transistor package.

A bipolar junction transistor is a three-terminal semiconductor device that consists of two p-n junctions which are able to amplify or magnify a signal. It is a current controlled device. The three terminals of the BJT are the base, the collector, and the emitter. A signal of a small amplitude applied to the base is available in the amplified form at the collector of the transistor. This is the amplification provided by the BJT. Note that it does require an external source of DC power supply to carry out the amplification process.

Bipolar transistors are manufactured in two types, PNP and NPN, and are available as separate components, usually in large quantities. The prime use or function of this type of transistor is to amplify current. This makes them useful as switches or amplifiers. They have a wide application in electronic devices like mobile phones, televisions, radio transmitters, and industrial control.

In NPN BJT, p-type semiconductor is sandwiched between the two n-type semiconductors. The two n-type semiconductors act as emitter and collector respectively while the p-type semiconductor acts as a base. This is shown in the figure below.


Current entering the emitter, base, and collector has the sign convention of positive while the current that leaves the transistor has the sign convention of negative.

BJTs are of two types namely NPN and PNP based on doping types of the three main terminals. An NPN transistor consists of two semiconductor junctions that have a thin p-doped anode region and PNP transistor also consists of two semiconductor junctions that have a thin n- doped cathode region.

The flow of charge in a Bipolar transistor is due to the diffusion of charge carriers between the two regions belonging to different charge concentrations. Regions of BJT are known as the base, collector, and emitter.

The emitter region is highly doped when compared to other layers. Both collector and base layers have the same charge carrier concentrations. Among these junctions, the base-emitter junction is forward biased, and the base-collector junction is reverse biased. Forward biased means p-doped region has more potential than the n-doped side. 006ab0faaa

narasimhar images download

serial dilution

how to get outlook to automatically download pictures

intelligent standby list cleaner download

you see my baby mp3 download