Articles:
Asymptotic modelling of Signorini problem with von Karman conditions. C.R. de Mécanique, 336 (2008), 846-850. 1.09 Impact Factor.
Modélisation asymptotique d’une coque peu-profonde de Marguerre-von Karman généralisée dans le cas dynamique. J. ARIMA, Vol.13.pp.63-76 .
Asymptotic modelling of time-dependent Signorini problem without friction of linear thin plate, Journal of Mathematical Analysis, Volume 1 Issue 2(2010), Pages 28-43.
Asymptotic modelling of a Signorini problem of generalized Marguerre-von Karman shallow shells, Applicable Analysis, DOI :10.1080/00036811.2012.708407, (2012). 0.80 Impact Factor.
Existence result for a dynamic dépendent of generalized Marguerre-von Kármán shallow shells, J. Elasticity, April 2013, Volume 111, Issue 2, pp 265-283 DOI 10.1007/s10659-012-9402-5, Springer. 1.35 Impact Factor.
Asymptotic modeling of Signorini problem with Coulomb friction for a linearly elastostatic shallow shell. Mathematical Methods in the Applied Sciences 07/2015; DOI :10.1002/mma.3578· 0.92 Impact Factor.
Modeling of frictionless Signorini problem for a linear elastic membrane shell. Applicable Analysis, August 2020. DOI: 10.1080/00036811.2020.1807008. 1.107 2019 Impact Factor.
Developing new deep-learning model to enhance network intrusion classification. January 2021, Evolving Systems. DOI: 10.1007/s12530-020-09364-z. 2.07 Impact Factor.
Approximate solution for a fractional BVP under -Riemann–Liouville operators via iterative method and artificial neural networks. Mathematical Methods in the Applied Sciences,2023. https://doi.org/10.1002/mma.9215
Existence study of semilinear fractional differential equations and inclusions for multi–term problem under Riemann–Liouville operators. Mathematical Methods in the Applied Sciences, 2023, 46(6), pp. 6910-6929. https://doi.org/10.1002/mma.8947
Existence study of semilinear fractional differential inclusions for multi- term problem. Nonlinear Studies, Vol. 30, No.3, pp. 953-969, (2023). http://www.nonlinearstudies.com/index.php/nonlinear/article/view/3108
An Estimation of Distribution Algorithm for Permutation Flow-Shop Scheduling Problem. Systems 11, no. 8: 389. https://doi.org/10.3390/systems11080389
Approximate numerical algorithms and artificial neural networks for analyzing a fractalfractional mathematical model. AIMS Mathematics, 8(12):28280-28307 (2023). http://www.aimspress.com/article/doi/10.3934/math.20231447
Hyperbolic Quasivariational Inequalities with Applications to Dynamic Viscoelastic Frictional Contact Problem. Asian-European Journal of Mathematics © World Scientific Publishing Company 2024