Research


As a global change aquatic scientist, I examine the links between climate change and lake ecosystems. I merge disparate data sources and modelling approaches to maximizing the spatial and temporal scope of my work. But my predominantly global scale research is grounded by several regional foci including specific lakes in Central Europe, Central North America, and East Africa. Here is a sample of my research across that range from local to global.

Publications...

Anthropogenic activity is leading to widespread changes in lake water quality—a key contributor to socio-ecological health. But, the anthropogenic forces affecting lake water quality (climate change, land use change, and invasive species) are unevenly distributed across lakes, across the seasonal cycle, and across space within lakes, potentially leading to highly variable water quality responses that are poorly documented at the global scale. Here, we used 742 million chlorophyll-a (chl-a) estimates merged over 6 satellite sensors (daily, 1 to 4 km resolution) to quantify water quality changes from 1997 to 2020 in 344 globally-distributed large lakes. Chl-a decreased across 56% of the cumulative total lake area, challenging the putative widespread increase in chl-a that is expected due to human activity. 

Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86–2.60°C under Representative Concentration Pathways (RCPs) 2.6–8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%–40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970–1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies. 


Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections


Compound hot temperature and high chlorophyll extreme events in global lakes


Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms