Ontological Argument: " An argument for the existence of God, first formulated by St. Anselm. according to this argument, since perfection implies existence, God necessarily exists." (Jones, W.T., p. 345. The Medieval Mind.)
I. Ontological proof of the existence of God
A. argument
1. assumption
a. we posses an idea of an absolutely perfect being.
1. therefore, being than which nothing greater exists
2. question
a. does being exist in reality
3. Anselm's answer
a. it must
1. existing only as an idea
a. contradictory
b. if only exists as an idea a greater being can be imagined
1. a being with existing
B. two points of attack
1. does a perfect idea exist in the first place
2. is existence an "added perfection?"
C. Gaunils
1. immediately attacked
a. point one
1. skeptic would not accept Anselm's assumption
2. counter argument
a. Anselm = Platonic
1. we have never seen an equal pair of sticks
2. still have idea of absolute equality
3. without the knowledge of the form we could not recognize near equality
b. Anselm
1. have a sense of "degrees of perfection"
a. some things are better than others
1. based on a standard of comparison
a. idea of absolute perfection
b. point two
1. idea of existence is not proof of existence
2. imagine a perfect island composed of any element you wish
3. imagine it as existing
4. not proof of existence
5. counter argument
a. criticism rests on an equivocation
1. most perfect has one meaning when applied to island and another when applied to being.
a. therefore, existence irrelevant to perfection of idea
6. point
a. existence is not an added perfection
1. no contradiction exists in a perfect being existing only as an idea