Kazempour, A. and Balogh, P., 2024. Margination behavior of a circulating cell in a tortuous microvessel. Physics of Fluids, 36(9).
Selected as an Editor's Pick
Hossain, M.M.N., Hu, N.W., Kazempour, A., Murfee, W.L. and Balogh, P., 2024. Hemodynamic characteristics of a tortuous microvessel using high‐fidelity red blood cell resolved simulations. Microcirculation, p.e12875.
Hossain, M.M.N., Hu, N.W., Abdelhamid, M., Singh, S., Murfee, W.L. and Balogh, P., 2023. Angiogenic microvascular wall shear stress patterns revealed through three-dimensional Red blood cell resolved modeling. Function, 4(6), p.zqad046.
Featured on the Front Cover, with a press release from the American Physiological Society
Hu, N.W., Lomel, B.M., Rice, E.W., Hossain, M.M.N., Sarntinoranont, M., Secomb, T.W., Murfee, W.L. and Balogh, P., 2023. Estimation of shear stress heterogeneity along capillary segments in angiogenic rat mesenteric microvascular networks. Microcirculation, 30(8), p.e12830.
Hu, N.W., Rodriguez, C.D., Rey, J.A., Rozenblum, M.J., Courtney, C.P., Balogh, P., Sarntinoranont, M. and Murfee, W.L., 2022. Estimation of shear stress values along endothelial tip cells past the lumen of capillary sprouts. Microvascular Research, 142, p.104360.
Roychowdhury, S., Mahmud, S.T., Martin, A., Balogh, P., Puleri, D.F., Gounley, J., Draeger, E.W. and Randles, A., 2023, November. Enhancing Adaptive Physics Refinement Simulations Through the Addition of Realistic Red Blood Cell Counts. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-13).
Puleri, D.F., Roychowdhury, S., Balogh, P., Gounley, J., Draeger, E.W., Ames, J., Adebiyi, A., Chidyagwai, S., Hernández, B., Lee, S. and Moore, S.V., 2022, September. High performance adaptive physics refinement to enable large-scale tracking of cancer cell trajectory. In 2022 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 230-242). IEEE.
Balogh, P., Gounley, J., Roychowdhury, S. and Randles, A., 2021. A data-driven approach to modeling cancer cell mechanics during microcirculatory transport. Scientific reports, 11(1), p.15232.
Related Publications:
Large-scale simulation of 3D cellular-scale blood flow (deformable cells, rigid particulate) in complex geometries
Postdoc work in the RandlesLab at Duke, on modeling cancer cells from specific cell lines:
https://www.nature.com/articles/s41598-021-94445-5
Coming soon!
Coming soon!