The Manchester Baby, also called the Small-Scale Experimental Machine (SSEM),[1] was the first electronic stored-program computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948.[2]

The Baby was not intended to be a practical computing engine, but was instead designed as a testbed for the Williams tube, the first truly random-access memory. Described as "small and primitive" 50 years after its creation, it was the first working machine to contain all the elements essential to a modern electronic digital computer.[3] As soon as the Baby had demonstrated the feasibility of its design, a project was initiated at the university to develop it into a full scale operational machine, the Manchester Mark 1. The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world's first commercially available general-purpose computer.[4][5]


Baby Computer Games Free Download


Download Zip 🔥 https://shoxet.com/2y2Mrc 🔥



The first design for a program-controlled computer was Charles Babbage's Analytical Engine in the 1830s, with Ada Lovelace conceiving the idea of the first theoretical program to calculate Bernoulli numbers. A century later, in 1936, mathematician Alan Turing published his description of what became known as a Turing machine, a theoretical concept intended to explore the limits of mechanical computation. Turing was not imagining a physical machine, but a person he called a "computer", who acted according to the instructions provided by a tape on which symbols could be read and written sequentially as the tape moved under a tape head. Turing proved that if an algorithm can be written to solve a mathematical problem, then a Turing machine can execute that algorithm.[6]

The ENIAC (1946) was the first automatic computer that was both electronic and general purpose. It was Turing complete, with conditional branching, and programmable to solve a wide range of problems, but its program was held in the state of switches in patch cords, rather than machine-changeable memory, and it could take several days to reprogram.[3] Researchers such as Turing and Zuse investigated the idea of using the computer's memory to hold the program as well as the data it was working on,[10] and it was mathematician John von Neumann who wrote a widely distributed paper describing that computer architecture, still used in almost all computers.[11]

The construction of a von Neumann computer depended on the availability of a suitable memory device on which to store the program. During the Second World War researchers working on the problem of removing the clutter from radar signals had developed a form of delay-line memory, the first practical application of which was the mercury delay line,[12] developed by J. Presper Eckert. Radar transmitters send out regular brief pulses of radio energy, the reflections from which are displayed on a CRT screen. As operators are usually interested only in moving targets, it was desirable to filter out any distracting reflections from stationary objects. The filtering was achieved by comparing each received pulse with the previous pulse, and rejecting both if they were identical, leaving a signal containing only the images of any moving objects. To store each received pulse for later comparison it was passed through a transmission line, delaying it by exactly the time between transmitted pulses.[13]

Turing joined the National Physical Laboratory (NPL) in October 1945,[14] by which time scientists within the Ministry of Supply had concluded that Britain needed a National Mathematical Laboratory to co-ordinate machine-aided computation.[15] A Mathematics Division was set up at the NPL, and on 19 February 1946 Alan Turing presented a paper outlining his design for an electronic stored-program computer to be known as the Automatic Computing Engine (ACE).[15] This was one of several projects set up in the years following the Second World War with the aim of constructing a stored-program computer. At about the same time, EDVAC was under development at the University of Pennsylvania's Moore School of Electrical Engineering, and the University of Cambridge Mathematical Laboratory was working on EDSAC.[16]

The NPL did not have the expertise to build a machine like ACE, so they contacted Tommy Flowers at the General Post Office's (GPO) Dollis Hill Research Laboratory. Flowers, the designer of Colossus, the world's first programmable electronic computer, was committed elsewhere and was unable to take part in the project, although his team did build some mercury delay lines for ACE.[15] The Telecommunications Research Establishment (TRE) was also approached for assistance, as was Maurice Wilkes at the University of Cambridge Mathematical Laboratory.[15]

For use in a binary digital computer, the tube had to be capable of storing either one of two states at each of its memory locations, corresponding to the binary digits (bits) 0 and 1. It exploited the positive or negative electric charge generated by displaying either a dash or a dot at any position on the CRT screen, a phenomenon known as secondary emission. A dash generated a positive charge, and a dot a negative charge, either of which could be picked up by a detector plate in front of the screen; a negative charge represented 0, and a positive charge 1. The charge dissipated in about 0.2 seconds, but it could be automatically refreshed from the data picked up by the detector.[21]

After developing the Colossus computer for code breaking at Bletchley Park during World War II, Max Newman was committed to the development of a computer incorporating both Alan Turing's mathematical concepts and the stored-program concept that had been described by John von Neumann. In 1945, he was appointed to the Fielden Chair of Pure Mathematics at Manchester University; he took his Colossus-project colleagues Jack Good and David Rees to Manchester with him, and there they recruited F. C. Williams to be the "circuit man" for a new computer project for which he had secured funding from the Royal Society.[23]

"Having secured the support of the university, obtained funding from the Royal Society, and assembled a first-rate team of mathematicians and engineers, Newman now had all elements of his computer-building plan in place. Adopting the approach he had used so effectively at Bletchley Park, Newman set his people loose on the detailed work while he concentrated on orchestrating the endeavor."

"Now let's be clear before we go any further that neither Tom Kilburn nor I knew the first thing about computers when we arrived at Manchester University ... Newman explained the whole business of how a computer works to us."

A word in the computer's memory could be read, written, or refreshed, in 360 microseconds. An instruction took four times as long to execute as accessing a word from memory, giving an instruction execution rate of about 700 per second. The main store was refreshed continuously, a process that took 20 milliseconds to complete, as each of the Baby's 32 words had to be read and then refreshed in sequence.[24]

Williams and Kilburn reported on the Baby in a letter to the Journal Nature, published in September 1948.[41] The machine's successful demonstration quickly led to the construction of a more practical computer, the Manchester Mark 1, work on which began in August 1948. The first version was operational by April 1949,[40] and it in turn led directly to the development of the Ferranti Mark 1, the world's first commercially available general-purpose computer.[4]

Which of her other books had buttons? None, thus, this became the Christmas favorite. Highly recommended, and very satisfied with the results. Still too early to tell if we have a future computer/electrical engineer in the works.

Until this point, computers such as the codebreaking Colossus had to be physically reprogrammed and rewired every time they needed to do a new task. To take the first step towards the computers of today, which are capable of carrying out multiple tasks on command, researchers had to develop a computer with a memory.

Williams and his team needed to test their idea that the tube could create memory, so set about building a prototype stored-program computer. Using war surplus supplies, including some from Bletchley Park, Baby was built and completed by June 1948.

Number two, is baby sitting in my lap while I work on my 2 big monitors considered screentime? On the one hand, I don't love how drawn he is to the shiny screen. But on the other, screens are a fact of professional life and most elementary school students are issued some kind of laptop.

Dr Sumner, who is delivering a special lecture at the anniversary event, adds: The Baby was also the first in a long series of highly influential computer projects in Manchester which have highlighted the unique connections between the University and local industry."

It inspired a long-running partnership between the University and Ferranti Ltd. This partnership led to the Ferranti Mark 1, the world's first computer to be sold commercially in 1951, as well as to the UK's first supercomputer, the Ferranti Atlas in 1962, for a time the most powerful computer in the world.

This tradition of computer innovation at The University of Manchester continues today with projects such as the million-processor SpiNNaker machine being built by the University as a part of the EU FET Flagship Human Brain Project.

Three issues are addressed: (a) the inclusion of Williams and Kilburn's names in the citation in relation to the Random Access Memory device; (b) evidence that the Manchester Baby computer was indeed the first of its kind; (c) evidence that the Ferranti Mark I was indeed the first commercially produced computer of this type.


In the literature over the years there have been six claims for the first stored-program computer with instructions and data held in addressable read/write memory. Some of these machines were sequence-controlled calculators rather than following the stored-program principle first set out in precise theoretical terms (but not in practical terms) in 1937 by Alan Turing [ref. 15]. Some were demonstrated via small test loops of simple instructions rather than via meaningful programs. Others of the candidates have been special-purpose rather than general purpose. A detailed analysis of the candidates is given in [ref. 19]. In summary, the Manchester Baby computer is considered to have been the first. ff782bc1db

download autotouch

sonic the hedgehog classic apk download

best setup latest version download

pubg steam

the notorious b.i.g. mo money mo problems mp3 download