1. Articles publiés dans des revues internationales à comité de lecture
Mokkadem, A. Pelletier, M. and Thiam, B. (2006). Large and moderate deviations principles for the recursive kernel estimators of the multivariate density and its partial derivatives. Serdica Math. J., vol. 32 (4), 323–354.
Mokkadem, A. Pelletier, M. and Thiam, B. (2008). Large and moderate deviations principles for kernel estimators of the multivariate regression. Mathematical Methods of Statistics, vol. 17 (2), 1–27.
Dabo-Niang, S. and Thiam, B. (2010). Robust quantile estimation and prediction for spatial processes. Statistics and Probability Letters, vol. 80, (17-18), 1447–1458.
Picard, F., Lebarbier, E., Hoebeke, M., Rigaill, G., Robin, S. and Thiam, B. (2011). Joint segmentation, calling and normalization of multiple CGH profiles. Biostatistics, vol. 12, Number 3, Pages 413–428.
Mokkadem A., Pelletier, M. and Thiam, B. (2011). Joint behaviour of semirecursive kernel estimators of the location and of the size of the mode of a probability density function. Journal of Probability and Statistics, doi :10.1155/2011/564297.
Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal R-estimator for spherical location. Statistica Sinica, vol. 23, (1), 305–333.
Amiri, A., Crambes, C. and Thiam, B. (2014). Recursive estimation of nonparametric regression with functional covariate. Computational Statistics and Data Analysis, vol. 69, 154–172.
Amiri, A. and Thiam, B. (2014). Consistency of the recursive nonparametric regression estimation for dependent functional data. Journal of Nonparametric Statistics, vol. 26 (3), 471–487.
Amiri, A. and Thiam, B. (2014). A smoothing stochastic algorithm for quantile estimation. Statistics and Probability Letters, vol. 93, 116–125.
Khardani, S. and Thiam, B. (2016). Strong consistency result of a nonparametric conditional mode estimator under random censorship for functional regressors. Communications in Statistics, Theory and Methods, vol. 45 (7), 1863–1875.
Amiri, A. Thiam, B. and Verdebout, T. (2017). On the estimation of the density of a directional data stream. Scandinavian Journal of Statistics, vol. 44 (1), 249–267.
Amiri, A. and Thiam, B. (2018). Regression estimation by local polynomial fitting for multivariate data stream. Statistical Papers, vol. 59, (2), 813–843.
Thiam, B. (2019). Relative error prediction in nonparametric deconvolution regression model. Statistica Nerlandica, vol. 73, (1), 63–77.
Dabo-Niang, S., Ternynck, C., Thiam, B. et Yao, A-F. (2020). Nonparametric statistical analysis of spatially distributed functional data. A paraître dans Wiley book ; Geostatistical Functional Data Analysis : Theory and Methods. Editors : Jorge Mateu, Ramon Giraldo. John Wiley and Sons, Chichester, UK. ISBN : 978-1-119-38784-8.
Dabo-Niang, S. and Thiam, B.(2020). Kernel regression estimation with errors-in-variables for random fields. Afrika Mathematica, vol 31, 29–56.
Dabo-Niang, S., Thiam, B. and Verdebout, T. (2022). Asymptotic efficiency of some nonparametric tests for location on hyperspheres, Statistics and Probability Letters, vol. 188, art. 109524.
Amiri, A. and Thiam, B. (2025). Nonparametric regression for locally stationary functional data. A paraître dans Communications in Statistics, Theory and Methods.
2. Prépublications
Bassene, A, Dabo-Niang, S, Diop., A. Thiam, B. Conditional tail index estimation for random fields : fixed design case.
Bassene, A, Dabo-Niang, S, Diop., A. Thiam, B. Kernel estimation of conditional tail index and quantile estimation for random fields.