Invited Speakers
Growing List (in Alphabetical Order)
Growing List (in Alphabetical Order)
Hugo Jair Escalante is researcher scientist at Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Mexico. He holds a PhD in Computer Science, for which he received the best PhD thesis on Artificial Intelligence 2010 award (Mexican Society in Artificial Intelligence). In 2017 he received the UANL research award in exact sciences. He is secretary and member of the board of directors of ChaLearn, a non-profit organism dedicated to organizing challenges, since 2011. He is information officer of the IAPR Technical Committee 12. Since 2017, he is editor of the Springer Series on Challenges in Machine Learning. He has been involved in the organization of several challenges in machine learning and computer vision, collocated with top venues, see http://chalearnlap.cvc.uab.es. He has served as co-editor of special issues in IJCV, IEEE TPAMI, and IEEE Transactions on Affective Computing. He has served as area chair for NIPS 2016 - 2018, he is data competition chair of PAKDD 2018 and has been member of the program committee of venues like CVPR, ICPR, ICCV, ECCV, ICML, NIPS, IJCNN. His research interests are on machine learning, challenge organization, and its applications on language and vision.
Joaquin Vanschoren is assistant professor of machine learning at the Eindhoven University of Technology (TU/e). His research focuses on the progressive automation of machine learning. He founded and leads OpenML.org, an open science platform for machine learning research used all over the world. He obtained several demonstration and application awards, the Dutch Data Prize, and has been invited speaker at ECDA, StatComp, AutoML@ICML, CiML@NIPS, Reproducibility@ICML, and many other conferences. He also co-organized machine learning conferences (e.g. ECMLPKDD 2013, LION 2016, Discovery Science 2018) and many workshops, including the AutoML Workshop series at ICML.
Lars Kotthoff is Assistant Professor of Computer Science at the University of Wyoming, USA. Previously, he held appointments at the University of British Columbia, Canada, and University College Cork, Ireland. He obtained his PhD at the University of St Andrews, Scotland. His research focuses on applying machine learning to improve the performance and ease of use of approaches to solve hard combinatorial problems and machine learning itself. Dr Kotthoff's more than 60 publications have garnered ~800 citations and his research has been supported by funding agencies and industry in various countries.
Pavel B. Brazdil is a senior researcher at LIAAD Inesc Tec, Porto and full professor at FEP, University of Porto, Portugal. He has obtained his PhD in the area of Machine Learning in 1981 at the University of Edinburgh when this area was still in its infancy. Since the 1990’s he has been pioneering the area of metalearning and supervised 3 PhD students in this area (besides 11 others in other areas). He is a co-author of a book on Metalearning, which has now about 400 citations. His interests lie in related areas, such as Data Mining, Algorithm selection, Automatic Machine Learning and Text Mining, among others. He has edited 6 books and more than 110 papers referenced on Google Scholar, of which about 80 are also on ISI / DBLP / Scopus. His articles have obtained more than 3700 citations on Google Scholar and his h-index there is 30. He is a member of the editorial board of the Machine Learning Journal and is a Fellow of ECCAI.
Yang Yu is an associate professor in the Department of Computer Science, Nanjing University, China. He holds a PhD in Computer Science, for which he received the 2013 National Outstanding Doctoral Dissertation Award of China. His research interest is in machine learning, mainly on reinforcement learning and derivative-free optimization for learning. His work has been published in Artificial Intelligence, IJCAI, AAAI, NIPS, KDD, etc. He was selected as one of the ``AI's 10 to Watch'' by IEEE Intelligent Systems in 2018, and received the PAKDD Early Career Award in 2018. He has been granted several conference best paper awards including IDEAL'16, GECCO'11 (theory track), and PAKDD'08. He has served as an Area Chair of IJCAI’18, a Senior PC member of IJCAI'15/17, a Publicity Co-chair of IJCAI'16/17 and IEEE ICDM'16, a Workshop Co-chair of ACML'16 and PRICAI’18.
Yu-Feng Li is currently an associate professor at National Key Laboratory for Novel Software Technology, Nanjing University. His research focuses on machine learning. Particularly, he is interested in semi-supervised learning, multi-label learning, statistical learning and optimization. He has published over 30 papers in top-tier journal and conferences such as JMLR, TPAMI, AIJ, ICML, NIPS, AAAI, etc. He is/was served as a senior program committee member of top-tier AI conferences such as IJCAI’15, IJCAI’17, AAAI’19, and an editorial board member of machine learning journal special issues. He has received outstanding doctoral dissertation award from China Computer Federation (CCF), outstanding doctoral dissertation award from Jiangsu Province and Microsoft Fellowship Award.