Publication

List of Publications

1) B Rani, N Sharma, R Shrivastava, A Agarwala, VP Verma, EEfficient Detection of CN− and Cu2+ Ions by Styryl-BODIPY based Multifunctional Chemosensor in Semi-aqueous Medium, Journal of Molecular Structure, 2023, 1274, 134396 (https://www.sciencedirect.com/science/article/abs/pii/S0022286022020452)
2) S Swami, R Shrivastava, N Sharma, A Agarwala, VP Verma, AP Singh,An Ultrasound-Assisted Solvent and Catalyst-Free Synthesis of Structurally Diverse Pyrazole Centered 1, 5-disubstituted Tetrazoles via One-Pot Four-Component Reaction, Letters in Organic Chemistry, 2022, 19, 795-802 (https://www.ingentaconnect.com/content/ben/loc/2022/00000019/00000009/art00017)
3) S Swami, A Agarwala, V Shrivastava, R Shrivastava, Poly (ethylene glycol)-400 crowned silver nanoparticles: a rapid, efficient, selective, colorimetric nano-sensor for fluoride sensing in an aqueous medium, Journal of Chemical Sciences, 2022, 134 , 1-12 (https://link.springer.com/article/10.1007/s12039-021-02002-4)
4) B. Rani, A. Agarwala, D. Behera, V. P. Vermad, A. . Singh, R. Shrivastava, A highly sensitive coumarin-thiophene hybrid chemosensor for sensing of H2O2 and aluminium, Dyes and Pigments, 2021, 194, 109596 (https://www.sciencedirect.com/science/article/abs/pii/S0143720821004629 )
5) S Swami , N Sharma , A Agarwala , V Shrivastava, R Shrivastava, Schiff base anchored silver nanomaterial: An efficient and selective nano probe for fluoride detection in an aqueous medium , Materials Today: Proceedings, 2021, 43, 2926-2932. (https://www.sciencedirect.com/science/article/pii/S2214785321003588?via%3Dihub)
6) D Jain, S Pareek, A Agarwala, R Shrivastava, W Sassi, SK Parida, D Behera, Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation, Journal of Materials Research and Technology, 2021, 10, 738-751 (https://www.sciencedirect.com/science/article/pii/S2238785420321268)
7) KP Misra, S Jain, A Agarwala, N Halder, S Chattopadhyay , Effective Mass Model Supported Band Gap Variation in Cobalt-Doped ZnO Nanoparticles Obtained by Co-Precipitation, Semiconductors, 2020, 54, 311-316 (https://link.springer.com/article/10.1134%2FS1063782620030136)
8) S Chattopadhyay, KP Misra, A Agarwala, A Shahee, S Jain, N Halder, A Rao, PD Babu, M Saran, AK Mukhopadhyay Dislocations and particle size governed band gap and ferromagnetic ordering in Ni doped ZnO nanoparticles synthesized via co-precipitation, Ceramics International, 2019, 45 (17), 23341-23354 (https://www.sciencedirect.com/science/article/pii/S0272884219322291)
9) Diaminomaleonitrile Based Hybrid Receptor for Selective Colorimetric Sensing of Dihydrogen Phosphate and Fluoride Ions, S Swami, A Agarwala, R Shrivastava,Sensor Letters, 2019, 17 (9), 720-724 (https://www.ingentaconnect.com/content/asp/senlet/2019/00000017/00000009/art00010)
10) Detection of reactive intermediates in manganese (III) porphyrin catalyzed oxidation reaction using 2, 4, 6-tri-tert-butylphenol as probe substrate,B Rani, A Singh, R Shrivastava, A Agarwala, Inorganica Chimica Acta 2019, 495, 119004 (https://www.sciencedirect.com/science/article/abs/pii/S0020169319305079)
11) Correlated quartic variation of band gap and NBE energy in sol-gel derived Zn1− xCoxO nanoparticles,S Chattopadhyay, KP Misra, A Agarwala, A Rao, PD Babu, Materials Chemistry and Physics 2019, 227, 236-241 (https://www.sciencedirect.com/science/article/abs/pii/S0254058419300896)
12) Recent progress in development of 2, 3-diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species, Aruna, B Rani, S Swami, A Agarwala, D Behera, R Shrivastava, RSC advances, 2019, 9 (52), 30599-30614 (https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra05298d)
13) Diaminomaleonitrile based chromo-fluorescent receptor molecule for selective sensing of Mn (II) and Zn (II) ions, S Swami, A Agarwala, D Behera, R Shrivastava,Sensors and Actuators B: Chemical 2018, 260, 1012-1017 (https://www.sciencedirect.com/science/article/abs/pii/S0925400518301126)
14) β-Carboline–imidazopyridine hybrids: selective and sensitive optical sensors for copper and fluoride ions, S Swami, D Behera, A Agarwala, VP Verma, R Shrivastava, New Journal of Chemistry, 2018, 42 (12), 10317-10326 (https://pubs.rsc.org/en/content/articlelanding/2018/nj/c8nj01851k/unauth#!divAbstract)
15) A Multifunctional Carbohydrazide‐Based Chromofluorescent Sensor for the Selective Detection of Cu (II) and Zn (II) Ion, S Swami, A Agarwala, VP Verma, R Shrivastava, ChemistrySelect 2017,2 (35), 11474-11481 (https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201701978)
16) Indium triflate promoted one-pot multicomponent synthesis of structurally diverse 3-amino-imidazo [1, 2-a] pyridines, S Swami, A Agarwala, R Shrivastava, Molecular diversity 2017, 21 (1), 81-88 (https://link.springer.com/article/10.1007%2Fs11030-016-9699-2)
17) A new class of efficient 4-[(nitro substituted-phenyl)-hydrazonomethyl]-1-phenyl-1H-pyrazole-3-carboxylate derived colorimetric chemosensor for selective sensing of fluoride and other biologically important anions, S Swami, A Agarwala, B Malik, R Shrivastava, Journal of Chemical Sciences 2016, 128 (9), 1451-1457 (https://link.springer.com/article/10.1007/s12039-016-1142-9)
18) ZnO nanoparticles as reusable heterogeneous catalyst for efficient one pot three component synthesis of imidazo-fused polyheterocycles, S Swami, N Devi, A Agarwala, V Singh, R Shrivastava, Tetrahedron Letters 2016, 57 (12), 1346-1350 (https://www.sciencedirect.com/science/article/abs/pii/S004040391630154X)
19) Sulfonic acid functionalized silica-coated CuFe 2 O 4 core–shell nanoparticles: an efficient and magnetically separable heterogeneous catalyst for the synthesis of 2-pyrazole-3 -amino-imidazo-fused polyheterocycles, S Swami, A Agarwala, R Shrivastava, New Journal of Chemistry 2016, 40 (11), 9788-9794 (https://pubs.rsc.org/en/content/articlelanding/2016/nj/c6nj02264b/unauth#!divAbstract)
20) Surface modification of metal oxides by polar molecules in a non-polar, polarizable solvent system, A Agarwala, N Kaynan, S Zaidiner, R Yerushalmi, Chemical Communications 2014, 50 (40), 5397-5399 (https://pubs.rsc.org/lv/content/articlelanding/2014/cc/c3cc47140c/unauth#!divAbstract)
21) Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds, O Hazut, A Agarwala, T Subramani, S Waichman, R Yerushalmi, JoVE (Journal of Visualized Experiments), 2013, e50770 (https://www.jove.com/t/50770/monolayer-contact-doping-silicon-surfaces-nanowires-using)
22) Facile Monolayer Formation on SiO2 Surfaces via Organoboron Functionalities, A Agarwala, T Subramani, A Goldbourt, D Danovich, R Yerushalmi, Angewandte Chemie International Edition 2013, 52 (29), 7415-7418 (https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201302655)
23) Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers, O Hazut, A Agarwala, I Amit, T Subramani, S Zaidiner, Y Rosenwaks, R Yerushalmi, ACS nano 2012, 6 (11), 10311-10318 (https://pubs.acs.org/doi/abs/10.1021/nn304199w)
24) The mechanistic aspects of iron (III) porphyrin catalyzed oxidation reactions in mixed solvents, A Singh, A Agarwala, K Kamaraj, D Bandyopadhyay, Inorganica Chimica Acta 2011, 372 (1), 295-303 (https://www.sciencedirect.com/science/article/abs/pii/S0020169311002155)
25) Chiral Mn (III) salen catalyzed oxidation of hydrocarbons, AN Biswas, P Das, SK Kandar, A Agarwala, D Bandyopadhyay, P Bandyopadhyay, Transition Metal Chemistry 2010, 35 (5), 527-530 (https://link.springer.com/article/10.1007%2Fs11243-010-9359-9)
26) Selective hydroxylation of alkanes catalyzed by iron (IV) corrole, AN Biswas, P Das, A Agarwala, D Bandyopadhyay, P Bandyopadhyay, Journal of Molecular Catalysis A: Chemical 2010, 326 (1-2), 94-98 (https://www.sciencedirect.com/science/article/abs/pii/S1381116910001822)
27) Chiral iron (III)-salen-catalyzed oxidation of hydrocarbons, AN Biswas, P Das, SK Kandar, A Agarwala, D Bandyopadhyay, P Bandyopadhyay, Catalysis Communications 2009, 10 (5), 708-711 (https://www.sciencedirect.com/science/article/abs/pii/S1566736708005086)
28) New mechanistic insights in the cytochrome p-450 model reactions: Direct identification of the reactive intermediates, A Agarwala, D Bandyopadhyay, Catalysis letters 2008, 124 (3-4), 392-396 (https://link.springer.com/article/10.1007/s10562-008-9489-2)
29) The radical versus non-radical reactive intermediates in the iron (III) porphyrin catalyzed oxidation reactions by hydroperoxides, hydrogen peroxide and iodosylarene, A Agarwala, D Bandyopadhyay, Catalysis letters 2008, 124 (3-4), 256-261 (https://link.springer.com/article/10.1007/s10562-008-9502-9)
30) Cytochrome P-450 model compound catalyzed selective hydroxylation of C–H bonds: Dramatic solvent effect, A Agarwala, D Bandyopadhyay, Chemical communications, 2006, 4823-4825 (https://pubs.rsc.org/en/content/articlelanding/2006/cc/b611988c/unauth#!divAbstract)
31) Iron(III) porphyrin-catalysed oxidation reactions by m-chloroperbenzoic acid: Nature of reactive intermediates, A Agarwala, V Bagchi, D Bandyopadhyay, Journal of chemical sciences 2005, 117 (2), 187-191(https://link.springer.com/article/10.1007%2FBF03356115 )