Multidimensional integrable systems from contact geometry, accepted for publication in Bol. Soc. Mat. Mex.
Recursion Operators for Multidimensional Integrable PDEs*, Acta Appl. Math. 181 (2022), art. 10, 12 pp.
Integrable (3+1)-dimensional system with an algebraic Lax pair**, Appl. Math. Lett. 92 (2019), 196-200. (arXiv version***)
New integrable (3+1)-dimensional systems and contact geometry*, Lett. Math. Phys. 108 (2018), 359-376 (arXiv version has some typos fixed; see also here)
Integrable (3+1)-dimensional systems with rational Lax pairs*, Nonlinear Dynamics 91 (2018), no. 3, 1677-1680 (arXiv version)
A Simple Construction of Recursion Operators for Multidimensional Dispersionless Integrable Systems**, J. Math. Analysis and Appl. 454 (2017), no. 2, 468-480
(with R. Vitolo) Symmetries and conservation laws for the Karczewska--Rozmej--Rutkowski--Infeld equation, Nonlinear Analysis: Real World Applications 32 (2016), 1-9 (arXiv version)
Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs, Physics Letters A 376 (2012), no.28-29, 2015-2022 (arXiv version)
(with M. Marvan) Recursion operators for dispersionless integrable systems in any dimension, Inverse Problems 28 (2012) 025011 (arXiv version)
Infinitely Many Local Higher Symmetries without Recursion Operator or Master Symmetry: Integrability of the Foursov--Burgers System Revisited*, Acta Applicandae Mathematicae 109 (2010), no.1, 273-281 (arXiv version)
Infinite hierarchies of nonlocal symmetries of the Chen--Kontsevich--Schwarz type for the oriented associativity equations. J. Phys. A: Math. Theor. 42 (2009), no. 40, art. 404017, 15 pp. (arXiv version)
(with B. M. Szablikowski) Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems, Phys. Lett. A 372 (2008), 7016-7023 (arXiv version)
(with P. Krtouš) Complete set of commuting symmetry operators for the Klein-Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetimes, Phys. Rev. D 77 (2008), paper 044033 (arXiv version)
(with M. Blaszak) Generalized Stackel transform and reciprocal transformations for finite-dimensional integrable systems, J. Phys. A: Math. Theor. 41 (2008), paper 10525 (arXiv version)
Exact solvability of superintegrable Benenti systems, J. Math. Phys. 48 (2007), no.5, paper 052114 (arXiv version)
Zero curvature representation for a new fifth-order integrable system*, J. Math. Sci. 151 (2008) 3227-3229 (arXiv version)
A strange recursion operator demystified, J. Phys. A: Math. Gen. 38 (2005), no.15, L257-L262 (arXiv version)
Why nonlocal recursion operators produce local symmetries: new results and applications, J. Phys. A: Math. Gen. 38 (2005), no.15, 3397-3407 (arXiv version)
(with M. Blaszak) Maximal superintegrability of Benenti systems, J. Phys. A: Math. Gen. 38 (2005), no.1, L1-L5 (arXiv version)
On the classification of conditionally integrable evolution systems in (1+1) dimensions*, J. Math. Sci. 136 (2006) 4392-4400 (arXiv version)
A simple way of making a Hamiltonian system into a bi-Hamiltonian one*, Acta Appl. Math. 83 (2004), no.1-2, 183-197 (arXiv version)
Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries*, Acta Appl. Math.83 (2004), no.1-2, 95-109 (arXiv version)
(with M. Marvan) Recursion operator for the stationary Nizhnik--Veselov--Novikov equation, J. Phys. A: Math. Gen. 36 (2003), no.5, L87-L92 (arXiv version)
(with J.A. Sanders) A remark on nonlocal symmetries for the Calogero--Degasperis--Ibragimov--Shabat equation, J. Nonlin. Math. Phys. 10 (2003), no. 1, 78-85 (arXiv copy)
Constructing conditionally integrable evolution systems in (1+1) dimensions: a generalization of invariant modules approach, J. Phys. A: Math. Gen. 35 (2002), 7653-7660
Symmetries and integrability: Bakirov system revisited, J. Phys. A: Math. Gen. 34 (2001), no.23, 4983-4990.
*Full text at the link is free to read even without valid subscription
**Elsevier Open Archive: Free to read and download even without valid subscription under Elsevier User License
***arXiv version means a preprint full-text version available free of charge from arXiv.org
Back to my main page