To keep the arithmetic simple, let it travel at the uniform speed of ten feet per second in a straight line, starting from x = 0 at t = 0. At any subsequent time t, its position x = 10t. Accordingly, part of what we mean by saying that the arrow moved from point A (x = 10) to point B (x = 30) is simply that it was at A when t = 1, and it was at B when t = 3. When we ask how it got from A to B, the answer is that it occupied each of the intervening points x (10 < x < 30) at suitable times t (1 < t < 3) — that is, satisfying the equation x = 10t. For example, when t = 2, the arrow was at the point C (x = 20). When we ask how it got from A to C, the answer is again: by occupying the intervening positions at suitable times. Notice that this answer is not: by zipping through the intervening points at ten feet per second. The requirement is that the arrow be at the appropriate point at the appropriate time — nothing is said about the instantaneous velocity of the arrow as it occupies each of these points. This approach has been appropriately dubbed "the at-at theory of motion". Once the motion has been described by a mathematical function that associates positions with times, it is then possible to differentiate the function and find its derivative, which in turn provides the instantaneous velocities for each moment of travel. But the motion itself is described by the pairing of positions with times alone. Thus, Russell was led to remark, "Weierstrass, by strictly banishing all infinitesimals, has at last shown that we live in an unchanging world, and that the arrow, at every moment of its flight, is truly at rest. The only point where Zeno probably erred was in inferring (if he did infer) that, because there is no change, therefore the world must be in the same state at one time as at another.