Synthesis of polycyclic and macrocyclic compounds via Olefin Metathesis
Olefin Metathesis
Polycyclic synthesis
Synthetic methodology
Multi-step synthesis
Macrocycles
Catalysis
Kotha, S.*; Agrawal, A.; Ansari, S. Synthesis of Angular Triquinane and [4.3.3]Propellane Derivatives via Ring-Rearrangement Olefin Metathesis. ChemistrySelect 2021, 6(41), 11178-11181. doi.org/10.1002/slct.202103226
Kotha, S.*; Agrawal, A.; Tangella, Y. Synthesis of mixed musks via Eschenmoser–Tanabe fragmentation, enyne metathesis and Diels–Alder reaction as key steps. RSC Adv. 2022, 12, 14278-14281. doi.org/10.1039/D2RA01458K.
Kotha, S.*; Agrawal, A. Synthesis of Linear Tetraquinanes by [3+2] Cycloaddition, Chemoselective Allylation of 7-Ketonorbornene, and Ring-Rearrangement Metathesis as Key Steps. Synlett 2022, 34, 841-845. https://doi.org/10.1055/s-0042-1751365.
Kotha, S.*; Agrawal, A. Synthesis of linear cis-anti-cis triquinane derivative via a [3+2] Cycloaddition and Krapcho decarboxylation as key steps. Indian J. Chem. 2023, 62, 527-531. doi.org/10.56042/ijc.v62i5.1433
Kotha, S.*; Agrawal, A.; Keesari, R. R. Synthetic Studies to exo-Ring-Junction based Fused 5/5/n-Tricyclic Systems: Access to A, B, C-Ring System of Longeracinphyllin A, Himalenine D, and Daphnipaxiamine A. Asian J. Org. Chem. 2023, e202300179. doi.org/10.1002/ajoc.202300179
Kotha, S.*; Agrawal, A. Linear tetraquinanes by microwave assisted [3+2] cycloaddition and ring-rearrangement metathesis. ChemistrySelect 2023, 8, e202302017. doi.org/10.1002/slct.202302017
Kotha, S.*; Agrawal, A. Synthesis of macrocyclic musk-like compounds through ring expansion metathesis and Tebbe olefination as key steps. Chemist rySelect 2023, 8, e202301971. doi.org/10.1002/slct.202301971
**For better view on mobile switch to desktop mode**