Arctic Studies Incorporating Regenerative Traits under Climate Change
Panchen, Z. A., Frei, E. R., & Henry, G. H. R. (2021). Increased Arctic climate extremes constrain expected higher plant reproductive success in a warmer climate. Arctic Science. https://doi.org/10.1139/as-2020-0045
Milbau, A., Graae, B. J., Shevtsova, A., & Nijs, I. (2009). Effects of a warmer climate on seed germination in the subarctic. Annals of Botany, 104(2), 287–296. https://doi.org/10.1093/aob/mcp117.
Shevtsova, A., Graae, B. J., Jochum, T., Milbau, A., Kockelbergh, F., Beyens, L., & Nijs, I. (2009). Critical periods for impact of climate warming on early seedling establishment in subarctic tundra. Global Change Biology, 15(11), 2662–2680. https://doi.org/10.1111/j.1365-2486.2009.01947.x.
Milbau, A., Vandeplas, N., Kockelbergh, F., & Nijs, I. (2017). Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra. AoB Plants, 9(5), plx040. https://doi.org/10.1093/aobpla/plx040.
Klady, R. A., Henry, G. H. R., & Lemay, V. (2011). Changes in High Arctic tundra plant reproduction in response to long-term experimental warming. Global Change Biology, 17(4), 1611–1624. https://doi.org/10.1111/j.1365-2486.2010.02319.x.
Graae, B. J., Ejrnæs, R., Marchand, F. L., Milbau, A., Shevtsova, A., Beyens, L., & Nijs, I. (2009). The effect of an early-season short-term heat pulse on plant recruitment in the Arctic. Polar Biology, 32(8), 1117–1126. https://doi.org/10.1007/s00300-009-0608-3.
Hobbie, S. E., & Chapin, F. S. III. (1998). An experimental test of limits to tree establishment in Arctic tundra. Journal of Ecology, 86(3), 449–461. https://doi.org/10.1046/j.1365-2745.1998.00278.x.
Graae, B. J., Alsos, I. G., & Ejrnaes, R. (2008). The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecology, 198, 275–284. https://doi.org/10.1007/s11258-008-9403-4.
Moulton, C. A., & Gough, L. (2011). Effects of soil nutrient availability on the role of sexual reproduction in an Alaskan tundra plant community. Arctic, Antarctic, and Alpine Research, 43(4), 612–620. https://doi.org/10.1657/1938-4246-43.4.612.
Meineri, E., Spindelböck, J., & Vandvik, V. (2013). Seedling emergence responds to both seed source and recruitment site climates: a climate change experiment combining transplant and gradient approaches. Plant Ecology, 214, 607–619. https://doi.org/10.1007/s11258-013-0193-y.
Cooper, E. J., Dullinger, S., & Semenchuk, P. (2011). Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science, 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005.
Wookey, P. A., Robinson, C. H., Parsons, A. N., Welker, J. M., Press, M. C., Callaghan, T. V., & Lee, J. A. (1995). Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard. Oecologia, 102, 478–489. https://doi.org/10.1007/BF00341360.
Mallik, A. U., Wdowiak, J. V., & Cooper, E. J. (2011). Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arctic, Antarctic, and Alpine Research, 43(3), 404–409. https://doi.org/10.1657/1938-4246-43.3.404.
Osaki, S., Uchida, M., & Nakatsubo, T. (2024). Thermal germination characteristics of three High Arctic plants: Implications for their response to climate warming. Polar Science, 39, 101045. https://doi.org/10.1016/j.polar.2024.101045
Reviews on the topic (Artic, Alpine & Treeline)
Mondoni, A., Jiménez-Alfaro, B., & Cavieres, L. A. (2022). Chapter 1 – Effect of climate change on plant regeneration from seeds in the Arctic and alpine biome. In C. C. Baskin & J. M. Baskin (Eds.), Plant Regeneration from Seeds: A Global Warming Perspective (pp. 3–18). Academic Press (Elsevier). https://doi.org/10.1016/B978-0-12-823731-1.00007-X.
Vázquez-Ramírez, J., & Venn, S. E. (2021). Seeds and Seedlings in a Changing World: A Systematic Review and Meta-Analysis from High Altitude and High Latitude Ecosystems. Plants, 10(4), 768. https://doi.org/10.3390/plants10040768.
Lett, S., & Dorrepaal, E. (2018). Global drivers of tree seedling establishment at alpine treelines in a changing climate. Functional Ecology, 32(7), 1666–1680. https://doi.org/10.1111/1365-2435.13137.
Jaganathan, G. K., & Dalrymple, S. E. (2016). Inconclusive Predictions and Contradictions: A Lack of Consensus on Seed Germination Response to Climate Change at High Altitude and High Latitude. Journal of Botany, 2016, 6973808. https://doi.org/10.1155/2016/6973808
Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., Diemer, M., Gugerli, F., Henry, G. H. R., Jones, M. H., Hollister, R. D., Jónsdóttir, I. S., Laine, K., Lévesque, E., Marion, G. M., Molau, U., Mølgaard, P., Nordenhäll, U., Raszhivin, V., Robinson, C. H., Starr, G., Stenström, A., Stenström, M., Totland, Ø., Turner, P. L., Walker, L. J., Webber, P. J., Welker, J. M. & Wookey, P. A. (1999) ‘Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment’, Ecological Monographs, 69(4), pp. 491-511. https://www.jstor.org/stable/44211488
How to collect seeds & measure regenerative traits
ENSCONET. (2019). ENSCONET Seed Collecting Manual for Wild Species. Retrieved from https://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/ENSCONET_Collecting_protocol_English.pdf
Arctic seed germination ecology (ARISE) project (2023). Seed collection manual for Arctic species. https://drive.google.com/file/d/18SjSYrTHnJkqnpdEkVwbyFCvVdW80PVN/view?usp=drive_link
Poschlod, P., Mašková, T., Chen, S.-C., Phartyal, S. S., Rosbakh, S., Silveira, F. A. O., Saatkamp, A., Dalling, J., Dalziell, E. L., Dickie, J., Fernández-Pascual, E., Guja, L. K., Jiménez-Alfaro, B., Merritt, D. M., Ooi, M. K. J., & Vandelook, F. (2025). A handbook for standardised measurements of regenerative plant functional traits [Preprint]. EcoEvoRxiv. https://doi.org/10.32942/X27W7D
ClimEx Handbook. (2025). Handbook for standardized measurements in climate change experiments. Retrieved from https://climexhandbook.w.uib.no/
Couvreur, M., Vandenberghe, B., Verheyen, K., & Hermy, M. (2004). Experimental assessment of seed adhesivity on animal furs. Seed Science Research, 14(2), 147–159. https://doi.org/10.1079/SSR2004164
KEW Technical Information sheets: https://brahmsonline.kew.org/msbp/Training/Resources
Nice examples of research focusing on regenerative functional traits
Guzmán Vázquez, I., Bonilla Valencia, L., & Galicia, L. (2024). Functional attributes of seeds as indicators of germination sensitivity to global warming. Environmental Reviews, 32(2), 173–185. https://doi.org/10.1139/er-2023-0066
Kildisheva, O. A., Dixon, K. W., Silveira, F. A. O., Chapman, T., Di Sacco, A., Mondoni, A., Turner, S. R., & Cross, A. T. (2020). Dormancy and germination: making every seed count in restoration. Restoration Ecology, 28(S3), S256–S265. https://doi.org/10.1111/rec.13140
Rosbakh, S., Carta, A., Fernández-Pascual, E., Phartyal, S. S., Dayrell, R. L. C., Mattana, E., Saatkamp, A., Vandelook, F., Baskin, J., & Baskin, C. (2023). Global seed dormancy patterns are driven by macroclimate but not fire regime. New Phytologist, 240(2), 555–564. https://doi.org/10.1111/nph.19173
Rosbakh, S., Baskin, C. C., & Baskin, J. M. (2020). Nikolaeva et al.’s reference book on seed dormancy and germination. Ecology, 101(7), e03049. https://doi.org/10.1002/ecy.3049