Papers in Referred Journals (Yearwise):
Anurag Shukla, N. Sukavanam and D.N. Pandey, Approximate Controllability of Fractional Semilinear Control System of Order (1; 2] in Hilbert Spaces, Nonlinear Studies 22(1),131-138, 2015 (Cambridge Scientific, SCOPUS)
Anurag Shukla, N. Sukavanam and D.N. Pandey, Complete Controllability of Semilinear Stochastic Systems with delay, Rendiconti del Circolo Matematico di Palermo DOI.10.1007/s12215-015-0191-0 (Springer, ESCI, IF 0.9).
A. Shukla et al., Approximate Controllability of Second-Order Semilinear Control System, Circuits Systems Signal Process. 35 (2016), no. 9, 3339-3354. MR3529759 (Springer, SCI, IF 2.225).
Anurag Shukla, N. Sukavanam and D.N.Pandey, Approximate Controllability of Semilinear Stochastic Control System with Nonlocal Conditions, Nonlinear Dynamics and Systems Theory 15 (2015), no. 3, 321-333 (SCOPUS).
Anurag Shukla, U. Arora and N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput. 49 (2015), no. 1-2, 513-527. MR3393792 (Springer, SCI, IF 1.686).
Anurag Shukla, N. Sukavanam and D. N. Pandey, Approximate controllability of second order semilinear stochastic system with nonlocal conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat.61 (2015), no. 2, 355-366. MR3421710 (Springer, SCOPUS)
A. Shukla, N. Sukavanam and D. N. Pandey, Approximate controllability of semilinear system with state delay using sequence method, J. Franklin Inst. 352 (2015), no. 11, 5380-5392. MR3416770 (Elsevier, SCI, IF 4.504).
Anurag Shukla, N. Sukavanam and D.N. Pandey, Complete Controllability of Semilinear Stochastic Systems with delay in both state and control, Mathematical Reports 18(68), 2 (2016),247-259. (Editura Academiei Romane, SCI, IF 0.662).
Anurag Shukla, N. Sukavanam and D. N. Pandey, Approximate Controllability of Semilinear Fractional Control Systems of Order (1; 2] with Infinite Delay, Mediterr. J. Math. 13 (2016), no. 5, 2539-2550. MR3554260 (Springer, SCI, IF 1.4).
Anurag Shukla, N. Sukavanam, and D.N. Pandey, Approximate controllability of semilinear stochastic system with multiple delays in control. Cogent Mathematics and Statistics 3, no.1 (2016): 1234183 (Taylor and Francis, ESCI, IF 1.2).
Divya Ahluwalia, N. Sukavanam & Anurag Shukla (2016) On the approximate controllability of semilinear control systems, Cogent Mathematics, 3:1, DOI: 10.1080/23311835.2016.1266773 (Taylor and Francis, ESCI, IF 1.2).
A.Shukla et al., Approximate Controllability of Fractional Semilinear Stochastic System of Order (1; 2], Journal of Dynamical and Control Systems, Springer DOI:10.1007/s10883-016-9350-7 (Springer, SCI, IF 1.425).
Anurag Shukla, N. Sukavanam and D.N.Pandey, Controllability of semilinear stochastic control system with finite delay, IMA J Math Control Info (2016) doi: 10.1093/imamci/dnw059 (Oxford University Press, SCI, IF 1.55).
Anurag Shukla, N. Sukavanam and D.N.Pandey, Approximate controllability of semilinear fractional stochastic control system. Asian-European Journal of Mathematics 11, no. 06(2018): 1850088 (World Scientific, ESCI, IF 0.5).
Anurag Shukla, Rohit Patel, Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01418-4 (Springer, SCI, IF 1.686).
Rohit Patel, Anurag Shukla, Shimpi Singh Jadon, R Udhayakumar. A novel increment approach for optimal control problem of fractional-order (1, 2] nonlinear systems. Math Meth Appl Sci. 2021; 1- 10. https://doi.org/10.1002/mma.7681 (Wiley, SCI, IF 2.32).
A. Shukla, R. Patel,. Existence and Optimal Control Results for Second-Order Semilinear System in Hilbert Spaces. Circuits Syst Signal Process (2021). https://doi.org/10.1007/s00034-021-01680-2 (Springer, SCI, IF 2.225).
Ajeet Singh, Anurag Shukla, V. Vijayakumar, and R. Udhayakumar, 2021. Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces. Chaos, Solitons & Fractals, 150, p.111095 (Elsevier, SCI, IF 5.94).
Sachin Kumar Verma, Ramesh Kumar Vats, Avadhesh Kumar, Velusamy Vijayakumar, Anurag Shukla. 2022. A discussion on the existence and uniqueness analysis for the coupled two-term fractional differential equations. Turkish Journal of Mathematics, 46(SI-1), pp.516-532. (SCI, IF 0.81).
S. Rezapour, R.H. Hernán, V. Vijayakumar, K.S. Nisar, and Anurag Shukla. 2021. A Note on Existence of Mild Solutions for Second-Order Neutral Integro-Differential Evolution Equations with State-Dependent Delay Fractal and Fractional 5, no. 3: 126. https://doi.org/10.3390/fractalfract5030126 (SCI, IF 3.313).
K. Kavitha, Nisar, K.S., Anurag Shukla, et al. A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems. Adv Differ Equ 2021, 467 (2021). (Springer, SCI, IF 2.803).
K Kavitha, V Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, R Udhayakumar. Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos, Solitons & Fractals, Volume 151, 2021, 111264 (Elsevier, SCI, IF 5.94).
Wasim Jamshed, Mohamed R Eid, Nor Ain Azeany Mohd Nasir, Kottakkaran Sooppy Nisar, Asim Aziz, Faisal Shahzad, C Ahamed Saleel, Anurag Shukla. Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: A noble case study, Case Studies in Thermal Engineering, Volume 27, 2021, 101258, (Elsevier, SCI, IF 4.724).
Urvashi Arora, Vijayakumar, V., Anurag Shukla, et al. Results on exact controllability of second-order semilinear control system in Hilbert spaces. Adv Differ Equ 2021, 455 (2021). (Springer, SCI, IF 2.803).
Tanveer Sajid, Wasim Jamshed, Faisal Shahzad, MA Aiyashi, Mohamed R Eid, Kottakkaran Sooppy Nisar, Anurag Shukla; Impact of Maxwell velocity slip and Smoluchowski temperature slip on CNTs with modified Fourier theory: Reiner-Philippoff model; https://doi.org/10.1371/journal.pone.0258367. (PLoS One, SCI, IF 3.24).
V. Vijayakumar, Anurag Shukla, Nisar, K.S. et al. A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators. Adv Differ Equ 2021, 484 (2021). (Springer, SCI, IF 2.803).
V Vijayakumar, Bipan Hazarika, K S Nisar, Anurag Shukla, R Samidurai; An investigation on the approximate controllability of impulsive neutral delay differential inclusions of second-order, Mathematical Methods in the Applied Sciences, 2022; 1- 19. doi:10.1002/mma.8142. (Wiley, SCI, IF 2.31).
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay, Chaos, Solitons & Fractals, Volume 153, Part 1, 2021, 111565. (Elsevier, SCI, IF 5.94).
Mohan Raja, M., Vijayakumar, V., Anurag Shukla, et al. New discussion on nonlocal controllability for fractional evolution system of order 1<r<2. Adv Differ Equ 2021, 481 (2021). (Springer, SCI, IF 2.803).
Anurag Shukla, V. Vijayakumar, Kottakkaran Sooppy Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2), Chaos, Solitons & Fractals, 2021, 111615. (Elsevier, SCI, IF 5.94).
C. Dineshkumar, R Udhayakumar, V Vijayakumar, K S Nisar, Anurag Shukla. A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1<r<2 accepted for publication in Mathematics and Computers in Simulation (Elsevier, SCI, IF 2.463).
Yong-Ki Ma, K. Kavitha, Wedad Albalawi, Anurag Shukla, Kottakkaran Sooppy Nisar, V. Vijayakumar, An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces, Alexandria Engineering Journal, 2022, https://doi.org/10.1016/j.aej.2021.12.067. (Elsevier, SCI, IF 3.732).
M Mohan Raja, V Vijayakumar, Anurag Shukla, K S Nisar, N Sakthivel, K Kaliraj. Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r ∈ (1,2), Optimal Control Applications and Methods, 2022; 1- 24. doi:10.1002/oca.2867 (Wiley, SCI, IF 2.53).
Vijayakumar, Velusamy, Kottakkaran S. Nisar, Dimplekumar Chalishajar, Anurag Shukla, Muslim Malik, Ateq Alsaadi, and Saud F. Aldosary. 2022. "A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators" Fractal and Fractional 6, no. 2: 73. https://doi.org/10.3390/ (SCI, IF 3.313).
R. Patel, A. Shukla, J.J. Nieto, V. Vijayakumar, and S.S. Jadon, 2022. New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces. Nonlinear Analysis: Modelling and Control, 27, pp.1-17. (Vilnius University Press, SCI, IF 3.25).
Rohit Patel, Anurag Shukla, Shimpi Singh Jadon. Optimal control problem for fractional stochastic nonlocal semilinear system, FILOMAT 36(4), 1-12. (SCI, IF 0.848).
Kamalendra Kumar, Rohit Patel, V Vijayakumar, Anurag Shukla, C Ravichandran. A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations, Mathematical Methods in the Applied Sciences 2022; 1- 23. doi:10.1002/mma.8117. (Wiley, SCI, IF 2.31).
Y.K. Ma, K. Kumar, R. Kumar, R. Patel, A. Shukla, and V. Vijayakumar, 2022. Discussion on boundary controllability of nonlocal fractional neutral integrodifferential evolution systems. AIMS Mathematics, 7(5), pp.7642-7656. (SCI, IF 1.4).
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K.S. Nisar, and A. Shukla, 2022. A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay. Chaos, Solitons & Fractals, 157, p.111916 (Elsevier, SCI, IF 5.94).
Y.K. Ma, M.M. Raja, K.S. Nisar, A. Shukla, and Vijayakumar, V., 2022. Results on controllability for Sobolev type fractional differential equations of order 1< r< 2 with finite delay. AIMS Mathematics, 7(6), pp.10215-10233. (SCI, IF 2.7).
Y.K. Ma, K. Kumar, R. Patel, A. Shukla, K.S. Nisar, and V. Vijayakumar, 2022. An investigation on boundary controllability for Sobolev-type neutral evolution equations of fractional order in Banach space. AIMS Mathematics, 7(7), pp.11687-11707. (SCI, IF 2.7).
K. Kavitha, V. Vijayakumar, K.S. Nisar, A. Shukla, W. Albalawi, and A.H. Abdel-Aty, 2022. Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. AIMS Mathematics, 7(7), pp.12760-12780. (SCI, IF 2.7).
A. Singh, V. Vijayakumar, A. Shukla, and S. Chauhan, 2022. A Note on Asymptotic Stability of Semilinear Thermoelastic System. Qualitative Theory of Dynamical Systems, 21(3), pp.1-9. (Springer, SCI, IF 0.93).
R. Patel, V. Vijayakumar, J.J. Nieto, S.S. Jadon, and A. Shukla, 2022. A note on the existence and optimal control for mixed Volterra–Fredholm‐type integrodifferential dispersion system of third order. Asian Journal of Control. (Wiley, SCI, IF 2.444).
A. Singh and A. Shukla, Approximate controllability of the semilinear population dynamics system with diffusion. Mathematical Methods in the Applied Sciences, 46(7), pp.8418-8429 (Wiley, SCI, IF 3.1).
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K.S. Nisar, A. Shukla, A.H. Abdel-Aty, M. Mahmoud, and E.E. Mahmoud, 2022. A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality. Results in Physics, p.105647 (Elsevier, SCI, IF 4.56).
Pooja Gautam, Anurag Shukla, and Patel, R. Results on impulsive semilinear differential equations with control functions. Math Meth Appl Sci. 2022; 1- 10. doi:10.1002/mma.8363 (Wiley, SCI, IF 3.1).
M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, and H.M. Baskonus, 2022. On the approximate controllability results for fractional integrodifferential systems of order 1< r< 2 with sectorial operators. Journal of Computational and Applied Mathematics, p.114492 (Elsevier, SCI, IF 2.872).
Y.K. Ma, W.K. Williams, V. Vijayakumar, K.S. Nisar, and A. Shukla, 2022. Results on Atangana-Baleanu fractional semilinear neutral delay integro-differential systems in Banach space. Journal of King Saud University-Science, 34(6), p.102158. (Elsevier, SCI, IF 3.829).
A. Shukla, V. Vijayakumar, K.S. Nisar, A.K. Singh, R. Udhayakumar, T. Botmart, W. Albalawi, and M. Mahmoud, 2022. An analysis on approximate controllability of semilinear control systems with impulsive effects. Alexandria Engineering Journal, 61(12), pp.12293-12299 (Elsevier, SCI, IF 6.6).
Y.K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, and K.S. Nisar, 2022. Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions☆. Ain Shams Engineering Journal, p.101882 (Elsevier, SCI, IF 4.79).
U. Arora, V. Vijayakumar, A. Shukla, M. Sajid, and K.S. Nisar, 2022. A discussion on controllability of nonlocal fractional semilinear equations of order 1< r< 2 with monotonic nonlinearity. Journal of King Saud University-Science, 34(8), p.102295 (Elsevier, SCI, IF 3.829).
C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, and K.S. Nisar, 2022. Controllability discussion for fractional stochastic Volterra–Fredholm integrodifferential systems of order 1< r< 2. International Journal of Nonlinear Sciences and Numerical Simulation (De Gruyter, SCI, IF 2.156).
V. Vijayakumar, M.M. Raja, A. Shukla, J.J. Nieto, and K.S. Nisar, 2022. A Note on the Existence and Controllability Results for Fractional Integrodifferential Inclusions of Order r∈(1, 2] with Impulses. Qualitative theory of dynamical systems, 21(4) (Springer, SCI, IF 1.9).
U. Arora, V. Vijayakumar, A.K. Singh, H.K. Sahu and A. Shukla, 2024. Results on approximate controllability for a second-order semilinear nonlocal control system with monotonic nonlinearity. Journal of Control and Decision, 11(2), pp.283-292 (Taylor & Francis, ESCI, IF 1.5).
W.K. Williams, V. Vijayakumar, K.S. Nisar, and A. Shukla, 2023. Atangana–Baleanu semilinear fractional differential inclusions with infinite delay: existence and approximate controllability. Journal of Computational and Nonlinear Dynamics, 18(2), p.021005 (ASME, SCI, IF 1.9).
R. Patel, A. Shukla, S.S. Jadon, and A.K. Singh, 2023. Analytic resolvent semilinear integro‐differential systems: Existence and optimal control. Mathematical Methods in the Applied Sciences, 46(11), pp.11876-11885 (Wiley, SCI, IF 2.3).
Y.K. Ma, M.M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, and K.S. Nisar, 2022. Existence and continuous dependence results for fractional evolution integrodifferential equations of order r∈(1, 2). Alexandria Engineering Journal, 61(12), pp.9929-9939. (Elsevier, SCI, IF 3.732).
Anurag Shukla and N. Sukavanam, 2024. Interior approximate controllability of second-order semilinear control systems. International Journal of Control, 97(3), pp.615-624 (Taylor & Francis, SCI, IF 1.6).
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, and K.S. Nisar, 2023. Discussion on the approximate controllability of nonlocal fractional derivative by Mittag-Leffler kernel to stochastic differential systems. Qualitative Theory of Dynamical Systems, 22(1), p.27 (Springer, SCI, IF 1.9).
M. Johnson, V. Vijayakumar, K.S. Nisar, A. Shukla, T. Botmart, and V. Ganesh, 2023. Results on the approximate controllability of Atangana-Baleanu fractional stochastic delay integrodifferential systems. Alexandria Engineering Journal, 62, pp.211-222. (Elsevier, SCI, IF 6.6).
Y.K. Ma, V. Vijayakumar, Shukla, A., Nisar, K.S., Thilagavathi, K., Nashine, H.K., Singh, A.K. and Zakarya, M., 2022. Discussion on the existence of mild solution for fractional derivative by Mittag–Leffler kernel to fractional stochastic neutral differential inclusions. Alexandria Engineering Journal (Elsevier, SCI, IF 6.6)
C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, and K.S. Nisar, 2022. New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order r∈(1, 2). Communications in Nonlinear Science and Numerical Simulation, p.106891. (Elsevier, SCI, IF 4.186)
Y.K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, and K.S. Nisar, 2023. Hilfer fractional neutral stochastic Sobolev-type evolution hemivariational inequality: Existence and controllability☆. Ain Shams Engineering Journal, 14(9), p.102126 (Elsevier, SCI, IF 6.0).
R. Pandey, C. Shukla, A. Shukla, A. Upadhyay, and A.K. Singh, 2023. A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 13(1), pp.130-138 (AccScience, ESCI, IF 2.2).
V. Vijayakumar, M. Malik, and A. Shukla, 2023. Results on the approximate controllability of Hilfer type fractional semilinear control systems. Qualitative Theory of Dynamical Systems, 22(2), p.58 (Springer, SCI, IF 1.9).
A. Kumar, R. Patel, V. Vijayakumar, and A. Shukla, 2023. Investigation on the Approximate Controllability of Fractional Differential Systems with State Delay. Circuits, Systems, and Signal Processing, 42(8), pp.4585-4602 (Springer, SCI, If 1.8).
M. Johnson, M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, and H. Jahanshahi, 2023. Optimal control results for impulsive fractional delay integrodifferential equations of order 1< r< 2 via sectorial operator. Nonlinear Analysis: Modelling and Control, 28(3), pp.468-490 (Vilnius University Press, SCI, IF 2.1).
Y.K. Ma, M. Johnson, V. Vijayakumar, T. Radhika, A. Shukla, and K.S. Nisar, 2023. A note on approximate controllability of second-order impulsive stochastic Volterra-Fredholm integrodifferential system with infinite delay. Journal of King Saud University-Science, 35(4), p.102637 (Elsevier, SCI, IF 3.7).
M. Johnson, V. Vijayakumar, A. Shukla, K.S. Nisar, and B. Hazarika, 2024. Existence and approximate controllability results for second-order impulsive stochastic neutral differential systems. Applicable Analysis, 103(2), pp.481-505 (Taylor & Francis, SCI, IF 1.1).
M. Johnson, K. Kavitha, D. Chalishajar, M. Malik, V. Vijayakumar, and A. Shukla, 2023. An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness. Nonlinear Analysis: Modelling and Control, 28(4), pp.632-654 (Vilnius University Press, SCI, IF 2.1).
M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, W. Albalawi, and A.H. Abdel-Aty, 2023. A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order ${r}\in (1, 2) $ with impulses. Applied Mathematics for Modern Challenges, 8(5) (AIMS, SCI, IF 1.8).
P. Gautam, and A. Shukla, 2023. Stochastic controllability of semilinear fractional control differential equations. Chaos, Solitons & Fractals, 174, p.113858 (Elsevier, SCI, IF 5.3).
Y.K. Ma, J. Pradeesh, A. Shukla, V. Vijayakumar, and K. Jothimani, 2023. An analysis on the approximate controllability of neutral impulsive stochastic integrodifferential inclusions via resolvent operators. Heliyon, 9(10) (Elsevier, SCI, IF 3.4).
M. Malik, V. Vijayakumar, and A. Shukla, 2023. Controllability of discrete-time semilinear Riemann–Liouville-like fractional equations. Chaos, Solitons & Fractals, 175, p.113959 (Elsevier, SCI, IF 5.3).
M.M. Raja, V. Vijayakumar, J.J. Nieto, S.K. Panda, A. Shukla, and K.S. Nisar, 2023. An analysis on the approximate controllability results for Caputo fractional hemivariational inequalities of order 1< r< 2 using sectorial operators. Nonlinear Analysis: Modelling and Control, 28(6), pp.1037-1061 (Vilnius University Press, SCI, IF 2.1).
Y.K. Ma, M.M. Raja, A. Shukla, V. Vijayakumar, K.S. Nisar, and K. Thilagavathi, 2023. New results on approximate controllability of fractional delay integrodifferential systems of order 1< r< 2 with Sobolev-type. Alexandria Engineering Journal, 81, pp.501-518 (Elsevier, SCI, IF 6.2).
C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, K.S. Nisar, and A. Shukla, 2023. Results on approximate controllability for fractional stochastic delay differential systems of order r∈(1, 2). Stochastics and Dynamics, 23(06), p.2350047 (World Scientific, SCI, IF 0.8).
R. Patel, V. Vijayakumar, S.S. Jadon, and A. Shukla, 2023. An analysis on the existence of mild solution and optimal control for semilinear thermoelastic system. Numerical Functional Analysis and Optimization, 44(14), pp.1570-1582 (Taylor & Francis, SCI, IF 1.4).
V. Vijayakumar, K.S. Nisar, M.K. Shukla, and A. Shukla, 2023. Impulsive second order control differential equations: Existence and approximate controllability. Journal of King Saud University-Science, 35(9), p.102925 (Elsevier, SCI, IF 3.7).
M.M. Raja, V. Vijayakumar, A. Shukla, K.S. Nisar, and S. Rezapour, 2022. Investigating existence results for fractional evolution inclusions with order r∈(1, 2) in Banach space. International Journal of Nonlinear Sciences and Numerical Simulation 24(6), pp.2047-2060 (Vilnius University Press, SCI, IF 2.156).
W. Kavitha Williams, V. Vijayakumar, A. Shukla, and Nisar, K.S., 2023. An analysis on approximate controllability of Atangana–Baleanu fractional semilinear control systems. International Journal of Nonlinear Sciences and Numerical Simulation, 24(7), pp.2627-2638 (De Gruyter, SCI, IF 1.4).
Y.K. Ma, K. Kavitha, A. Shukla, V. Vijayakumar, and K.S. Nisar, 2024. An analysis on the optimal control and approximate controllability for Hilfer fractional neutral integrodifferential systems with finite delay. Optimal Control Applications and Methods, 45(3), pp.1086-1107 (Wiley, SCI, IF 2).
C. Shukla, A. Shukla, R. Kumar, A.K. Singh, and A. Gautam, 2024. A New Approach on Exact Controllability of Semilinear Predator Prey Model. Discontinuity, Nonlinearity, and Complexity, 13(01), pp.17-26 (LH Scientific, SCOPUS).
M. Johnson, M. Mohan Raja, V. Vijayakumar, and Anurag Shukla. 2024. Optimal Control Results for Fractional Differential Hemivariational Inequalities of Order r (1, 2). Optimization, January, 1–25. doi:10.1080/02331934.2024.2306304 (Taylor & Francis, SCI, IF 1.6).
K. Dhawan et al., Well-posedness and Ulam-Hyers stability of Hilfer fractional differential equations of order (1,2] with nonlocal boundary conditions, Bull. Sci. Math. {\bf 191} (2024), Paper No. 103401, 21 pp.; MR4708229 (Elsevier, SCI, IF 1.3)
P. Gautam, A. Shukla, et al., Approximate controllability of third order dispersion systems, Bull. Sci. Math. 191 (2024), Paper No. 103394, 16 pp.; MR4690510 (Elsevier, SCI, IF 1.3).
A. Chaurasia, S.K. Tripathi, A. Shukla, and S. Maurya, 2024. Complete Controllability of Nonlinear Neural Network Control Systems. Journal of Applied Nonlinear Dynamics, 13(03), pp.583-590 (LH Scientific, ESCI, IF 1).
Pooja Gautam, and Anurag Shukla, 2024. Controllability of partially observed stochastic semilinear fractional control systems. The Journal of Analysis, pp.1-17, https://doi.org/10.1007/s41478-024-00774-9 (Springer, ESCI, IF 0.7).
A.P. Singh, U.P. Singh, and A. Shukla, Optimal control results for second-order semilinear integrodifferential systems via resolvent operators, Optimal Control Appl. Methods 45(2024), no.~5, 2100--2112; MR4797015 (Wiley, SCI, IF 2).
M. Mohan Raja, V. Vijayakumar, K.C. Veluvolu, A. Shukla, and K. S. Nisar, Existence and optimal control results for Caputo fractional delay Clark's subdifferential inclusions of order $r\in(1,2)$ with sectorial operators, Optimal Control Appl. Methods {\bf 45} (2024), no.~4, 1832--1850; MR4772918 (Wiley, SCI, IF 2).
A. Sharma, S. N. Mishra and A. Shukla, Asymptotic stability for Hilfer-like nabla nonlinear fractional difference equations, 49--62, Electron. J. Differ. Equ. Conf., 27, Texas State Univ.--San Marcos, Dept. Math., San Marcos, TX, ; MR4810770 (Texas State University, SCI, IF 1.2).
A. Shukla, S.K. Panda, V. Vijayakumar, K. Kumar, and K. Thilagavathi, 2024. Approximate controllability of Hilfer fractional stochastic evolution inclusions of order 1< q< 2. Fractal and Fractional, 8(9), p.499 (MPDI, SCI, IF 3.5).
Rohit Patel, Anurag Shukla, SS Jadon, Existence and optimal control problem for semilinear fractional order (1,2] control system. Math Meth Appl Sci. 2020; 1- 12. https://doi.org/10.1002/mma.6662 (Wiley, SCI, IF 2.32).
Ajeet Singh, Anurag Shukla, Existence results for second-order semilinear stochastic delay differential equation. Math Meth Appl Sci. 2021; 1– 9. https://doi.org/10.1002/mma.7463 (Wiley, SCI, IF 2.32 ).
A. Sharma, S.N. Mishra, and A. Shukla, Schauder's fixed point theorem approach for stability analysis of nonlinear fractional difference equations, Chaos Solitons Fractals 188 (2024), Paper No. 115586, 7 pp.; MR4804697 (Elsevier, SCI, IF 5.3).
S. Vivek, A. Shukla, S.K. Panda, V. Vijayakumar, and T. Radhika, 2025. Neutral stochastic hemivariational inequalities with impulses: existence and approximate controllability. Stochastics, pp.1-19. DOI: https://doi.org/10.1080/17442508.2025.2462825 (Taylor & Francis, SCI, IF 0.8).
U. Arora, S. Singh, V. Vijayakumar, and A. Shukla, 2025. Trajectory controllability of integro-differential systems of fractional orders in Hilbert spaces. An International Journal of Optimization and Control: Theories & Applications, p.7118. DOI: 10.36922/ijocta.7118 (ACCSCIENCE Publishing, ESCI, IF 1.9).
A. Singh, M. Sajid, N.K. Tiwari, and A. Shukla, 2025. Single-channel medical images enhancement using fractional derivatives. PLoS One, 20(5), p.e0319990. (PLoS One, SCI, IF 2.6).
Ajay Kumar, Rohit Patel, V. Vijayakumar, and A. Shukla, "Extremal solution of nonlinear fractional order integro-differential systems with time-varying delays in Banach space," Journal of Nonlinear, Complex and Data Science, 2025. https://doi.org/10.1515/jncds-2024-0107. (De Gruyter Brill, SCI, IF 1.5).
Papers published in Conferences:
1. Anurag Shukla, N. Sukavanam and D.N.Pandey, Approximate Controllability of Semilinear Fractional Control Systems of Order (1; 2], SIAM Proceedings DOI:http://dx.doi.org/10.1137/1.9781611974072.25.
2. Anurag Shukla, N. Sukavanam and D.N.Pandey, Controllability of Semilinear Stochastic System with Multiple Delays in Control, IFAC proceedings volumes, Vol. 47, issue 1, 2014, 306-312.
3. Anurag Shukla, N. Sukavanam and D.N.Pandey, Approximate Controllability of Semilinear Stochastic System with State Delay, A book chapter in Mathematical Analysis and Its Applications (Springer), ISBN 978-81-322-2485-3
4. Anurag Shukla, N. Sukavanam and D.N.Pandey, 2015, September. Complete controllability of impulsive semilinear stochastic retarded system. In 2015 International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 7-12). IEEE.
5. A. Shukla, N Sukavanam and D.N.Pandey, Approximate Controllability of semilinear integrodifferential equations, SIAM PD 15, Arizona USA
6. Rohit Patel, Anurag Shukla, D.N. Pandey, Simpi Jadon, 2021. Results on Optimal Control for Abstract Semilinear Second-Order Systems. In 2021 Proceedings of the Conference on Control and its Applications (pp. 55-61). Society for Industrial and Applied Mathematics.