Anisotropic min-max via phase transitions. A. De Rosa, and A. Pigati. Submitted. 2025. ArXiv:2512.07039
Non-polyconvex Q-integrands with lower semicontinuous energies. D. De Gennaro, and A. De Rosa. Submitted. 2025. ArXiv:2510.24610
Rigidity of critical points of hydrophobic capillary functionals. A. De Rosa, R. Neumayer, and R. Resende. Submitted. 2025. ArXiv:2509.22532
Existence and regularity of min-max anisotropic minimal hypersurfaces. G. De Philippis, A. De Rosa, and Y. Li. Submitted. 2024. ArXiv:2409.15232
On the power of linear programming for K-means clustering. A. De Rosa, A. Khajavirad, and Y. Wang. Submitted. 2024. ArXiv:2402.01061
Construction of fillings with prescribed Gaussian image and applications. A. De Rosa, Y. Lei, and R. Young. Arch. Ration. Mech. Anal. 249(39), 2025.
The double and triple bubble problem for stationary varifolds: the convex case. A. De Rosa, and R. Tione. Trans. Amer. Math. Soc. 378(5):3393–3444, 2025.
Local Minimizers of the Anisotropic Isoperimetric Problem on Closed Manifolds. A. De Rosa, and R. Neumayer. Indiana Univ. Math. J. 74(5):1423–1466, 2025.
The anisotropic Min-Max theory: Existence of anisotropic minimal and CMC surfaces. G. De Philippis, and A. De Rosa. Commun. Pure Appl. Math. 77(7):3184–3226, 2024.
On the Theory of Anisotropic Minimal Surfaces. A. De Rosa. Notices of the AMS. 71(7):853–859, 2024.
Explicit convex hull description of bivariate quadratic sets with indicator variables. A. De Rosa, and A. Khajavirad. Math. Program. 2024. ArXiv: 2208.08703
Boundary regularity for anisotropic minimal Lipschitz graphs. A. De Rosa, and R. Resende. Commun. Partial. Differ. Equ. 49(1-2):15-37, 2023.
Efficient Joint Object Matching via Linear Programming. A. De Rosa, and A. Khajavirad. Math. Program. 202:1–46, 2023.
Regularity for graphs with bounded anisotropic mean curvature. A. De Rosa, and R. Tione. Invent. Math. 230:463-507, 2022.
The ratio-cut polytope and K-means clustering. A. De Rosa, and A. Khajavirad. SIAM J. Optim. 32(1):173-203, 2022.
Stability of optimal traffic plans in the irrigation problem. M. Colombo, A. De Rosa, A. Marchese, P. Pegon, and A. Prouff. Discrete Contin. Dyn. Syst. 42(4):1647-1667, 2022.
On the anisotropic Kirchhoff-Plateau problem. A. De Rosa, and L. Lussardi. Math. Eng. 4(2):1-13, 2022.
On the well-posedness of branched transportation. M. Colombo, A. De Rosa, and A. Marchese. Commun. Pure Appl. Math. 74(4):833-864, 2021.
Absence of bubbling phenomena for non convex anisotropic nearly umbilical and quasi Einstein hypersurfaces. A. De Rosa, and S. Gioffrè. J. Reine Angew. Math. 2021(780): 2021.
A nonlocal approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. A. De Rosa, and D. A. La Manna. Commun. Pure Appl. Anal. 20(5):2101-2116, 2021.
Uniqueness of critical points of the anisotropic isoperimetric problem for finite perimeter sets. A. De Rosa, S. Kolasiński, and M. Santilli. Arch. Ration. Mech. Anal. 238(3):1157–1198, 2020.
Equivalence of the ellipticity conditions for geometric variational problems. A. De Rosa, and S. Kolasiński. Commun. Pure Appl. Math. 73(11):2473-2515, 2020.
Existence results for minimizers of parametric elliptic functionals. G. De Philippis, A. De Rosa, and F. Ghiraldin. J. Geom. Anal. 30(2):1450–1465, 2020.
The Area Blow Up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. G. De Philippis, A. De Rosa, and J. Hirsch. Discrete Contin. Dyn. Syst. 39(12):7031-7056, 2019.
Stability for the mailing problem. M. Colombo, A. De Rosa, and A. Marchese. J. Math. Pures Appl. 128:152-182, 2019.
Quantitative stability for anisotropic nearly umbilical hypersurfaces. A. De Rosa, and S. Gioffrè. J. Geom. Anal. 29(3):2318-2346, 2019.
A direct approach to the anisotropic Plateau’s problem. C. De Lellis, A. De Rosa, and F. Ghiraldin. Adv. Calc. Var. 12(2):211-223, 2019.
Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. G. De Philippis, A. De Rosa, and F. Ghiraldin. Commun. Pure Appl. Math. 71(6):1123-1148, 2018.
Minimization of anisotropic energies in classes of rectifiable varifolds. A. De Rosa. SIAM J. Math. Anal. 50(1):162-181, 2018.
Improved stability of optimal traffic paths. M. Colombo, A. De Rosa, and A. Marchese. Calc. Var. Partial Differ. Equ. 57(28), 2018.
On the lower semicontinuous envelope of functionals defined on polyhedral chains. M. Colombo, A. De Rosa, A. Marchese, and S. Stuvard. Nonlinear Anal. 163C:201-215, 2017.
A direct approach to Plateau’s problem in any codimension. G. De Philippis, A. De Rosa, and F. Ghiraldin. Adv. Math. 288:59-80, 2016.
Direction of Impact for Explainable Risk Assessment Modeling. E. Borgonovo, M. Baucells, A. De Rosa, E. Plischke, J. Barr, H. Rabitz. Risk Anal. 45:2157–2182, 2025.
Functional changes in prefrontal cortex following frequency-specific training. L. Bach-Morrow, F. Boccalatte, A. De Rosa, D. Devos, C. Garcia-Sanchez, M. Inglese, A. Droby. Nature Sci. Rep. 12 (1), 2022.
Proposing an Unbiased Oxygen Reduction Reaction Onset Potential Determination by Using a Savitzky-Golay Differentiation Procedure. G. de Falco, M. Florent, A. De Rosa, T.J. Bandosz, J. Colloid Interface Sci. 586:597-600, 2021.
Min-max construction of anisotropic CMC surfaces. A. De Rosa. Calculus of Variations. Oberwolfach Reports. DOI: 10.14760/OWR-2022-37 (Lia Bronsard, László Székelyhidi, Yoshihiro Tonegawa, Tatiana Toro), 2022.
Regularity of anisotropic minimal surfaces. A. De Rosa. Partial Differential Equations. Oberwolfach Reports. DOI: 10.4171/OWR/2021/35 (Guido De Philippis, Richard Schoen, Felix Schulze), 2021.
Anisotropic counterpart of Allard’s rectifiability theorem and applications. A. De Rosa. Calculus of Variations. Oberwolfach Reports. 15(3):2077-2156 (Alessio Figalli, Robert V. Kohn, Tatiana Toro, Neshan Wickramasekera), 2019.