Text over gradients, semi-transparent colors, and background images still need to meet contrast requirements, but WCAG does not provide any guidance on how to measure their contrast. We recommend usually testing the area where contrast is lowest.

It is commonly used for live weather forecast broadcasts in which a news presenter is seen standing in front of a large CGI map which is really a large blue or green background. Using a blue screen, different weather maps are added on the parts of the image in which the colour is blue. If the news presenter wears blue clothes, their clothes will also be replaced with the background video. Chroma keying is also common in the entertainment industry for visual effects in movies and video games. Rotoscopy may instead be carried out on subjects that are not in front of a green (or blue) screen. Motion tracking can also be used in conjunction with chroma keying, such as to move the background as the subject moves.


Hd Background Images Light Green Colourl


DOWNLOAD 🔥 https://byltly.com/2xYd8M 🔥



Prior to the introduction of travelling mattes and optical printing, double exposure was used to introduce elements into a scene which were not present in the initial exposure. This was done using black draping where a green screen would be used today. George Albert Smith first used this approach in 1898. In 1903, The Great Train Robbery by Edwin S. Porter used double exposure to add background scenes to windows which were black when filmed on set, using a garbage matte to expose only the window areas.[5]

Petro Vlahos was awarded an Academy Award for his refinement of these techniques in 1964. His technique exploits the fact that most objects in real-world scenes have a colour whose blue-colour component is similar in intensity to their green-colour component. Zbigniew Rybczyski also contributed to bluescreen technology. An optical printer with two projectors, a film camera and a "beam splitter", was used to combine the actor in front of a blue screen together with the background footage, one frame at a time. In the early 1970s, American and British television networks began using green backdrops instead of blue for their newscasts. During the 1980s, minicomputers were used to control the optical printer. For the film The Empire Strikes Back, Richard Edlund created a "quad optical printer" that accelerated the process considerably and saved money. He received a special Academy Award for his innovation.

Meteorologists on television often use a field monitor, to the side of the screen, to see where they are putting their hands against the background images. A newer technique is to project a faint image onto the screen.

The principal subject is filmed or photographed against a background consisting of a single colour or a relatively narrow range of colours, usually blue or green because these colours are considered to be the furthest away from skin tone.[4] The portions of the video which match the pre-selected colour are replaced by the alternate background video. This process is commonly known as "keying", "keying out" or simply a "key".

Green is used as a backdrop for TV and electronic cinematography more than any other colour because television weather presenters tended to wear blue suits. When chroma keying first came into use in television production, the blue screen that was then the norm in the movie industry was used out of habit, until other practical considerations caused the television industry to move from blue to green screens. Broadcast-quality colour television cameras use separate red, green and blue image sensors, and early analog TV chroma keyers required RGB component video to work reliably. From a technological perspective it was equally possible to use the blue or green channel, but because blue clothing was an ongoing challenge, the green screen came into common use. Newscasters sometimes forget the chroma key dress code, and when the key is applied to clothing of the same colour as the background, the person would seem to disappear into the key. Because green clothing is less common than blue, it soon became apparent that it was easier to use a green matte screen than it was to constantly police the clothing choices of on-air talent. Also, because the human eye is more sensitive to green wavelengths, which lie in the middle of the visible light spectrum, the green analog video channel typically carried more signal strength, giving a better signal to noise ratio compared to the other component video channels, so green screen keys could produce the cleanest key. In the digital television and cinema age, much of the tweaking that was required to make a good quality key has been automated. However, the one constant that remains is some level of colour coordination to keep foreground subjects from being keyed out.[10]

Before electronic chroma keying, compositing was done on (chemical) film. The camera colour negative was printed onto high-contrast black and white negative, using either a filter or the high contrast film's colour sensitivity to expose only blue (and higher) frequencies. Blue light only shines through the colour negative where there is not blue in the scene, so this left the film clear where the blue screen was, and opaque elsewhere, except it also produced clear for any white objects (since they also contained blue). Removing these spots could be done by a suitable double-exposure with the colour positive (thus turning any area containing red or green opaque), and many other techniques. The result was film that was clear where the blue screen was, and opaque everywhere else. This is called a female matte, similar to an alpha matte in digital keying. Copying this film onto another high-contrast negative produced the opposite male matte. The background negative was then packed with the female matte and exposed onto a final strip of film, then the camera negative was packed with the male matte and was double-printed onto this same film. These two images combined creates the final effect.

In digital colour TV, colour is represented by three numbers (red, green, blue intensity levels). Chroma key is achieved by a simple numerical comparison between the video and the pre-selected colour. If the colour at a particular point on the screen matches (either exactly, or in a range), then the video at that point is replaced by the alternate background.

In order to create an illusion that characters and objects filmed are present in the intended background scene, the lighting in the two scenes must be a reasonable match. For outdoor scenes, overcast days create a diffuse, evenly coloured light which can be easier to match in the studio, whereas direct sunlight needs to be matched in both direction and overall colour based on time of day.

A chroma key subject must avoid wearing clothes which are similar in colour to the chroma key colour(s) (unless intentional e.g., wearing a green top to make it appear that the subject has no body), because the clothing may be replaced with the background image/video. An example of intentional use of this is when an actor wears a blue covering over a part of his body to make it invisible in the final shot. This technique can be used to achieve an effect similar to that used in the Harry Potter films to create the effect of an invisibility cloak. The actor can also be filmed against a chroma-key background and inserted into the background shot with a distortion effect, in order to create a cloak that is marginally detectable.[13]

In television and digital film making, however, it is equally easy to extract any colour, and green quickly became the favoured colour. Bright green is less likely to be in the foreground objects, colour film emulsions usually had much finer grain in the green, and lossy compression used for analog video signals and digital images and movies retain more detail in the green channel. Green can also be used outdoors where the light colour temperature is significantly blue. Red is avoided as it is in human skin, and any other colour is a mix of primaries and thus produces a less clean extraction.

A newer technique is to use a retroreflective curtain in the background, along with a ring of bright LEDs around the camera lens. This requires no light to shine on the background other than the LEDs, which use an extremely small amount of power and space unlike big stage lights, and require no rigging. This advance was made possible by the invention in the 1990s of practical blue LEDs, which also allow for emerald green LEDs.

There is also a form of colour keying that uses light spectrum invisible to human eye. Called Thermo-Key, it uses infrared as the key colour, which would not be replaced by background image during postprocessing.[14][15]

In principle, any type of still background can be used as a chroma key instead of a solid colour. First the background is captured without actors or other foreground elements; then the scene is recorded. The image of the background is used to cancel the background in the actual footage; for example in a digital image, each pixel will have a different chroma key. This is sometimes referred to as a difference matte.[17] However, this makes it easy for objects to be accidentally removed if they happen to be similar to the background, or for the background to remain due to camera noise or if it happens to change slightly from the reference footage.[18] A background with a repeating pattern alleviates many of these issues, and can be less sensitive to wardrobe colour than solid-colour backdrops.[19]

There is some use of the specific full-intensity magenta color .mw-parser-output .monospaced{font-family:monospace,monospace}#FF00FF in digital colour images to encode (1-bit) transparency; this is sometimes referred to as "magic pink".[20] This is not a photographic technique and the extraction of the foreground from the background is trivial.

The biggest challenge when setting up a blue screen or green screen is even lighting and the avoidance of shadow because it is best to have as narrow a colour range as possible being replaced. A shadow would present itself as a darker colour to the camera and might not register for replacement. This can sometimes be seen in low-budget or live broadcasts where the errors cannot be manually repaired or scenes reshot. The material being used affects the quality and ease of having it evenly lit. Materials which are shiny will be far less successful than those that are not. A shiny surface will have areas that reflect the lights making them appear pale, while other areas may be darkened. A matte surface will diffuse the reflected light and have a more even colour range. In order to get the cleanest key from shooting green screen, it is necessary to create a value difference between the subject and the green screen. In order to differentiate the subject from the screen, a two-stop difference can be used, either by making the green screen two stops higher than the subject, or vice versa. be457b7860

[2020] SecureCRT 8.5.4 Crack Professional Keygen

torrent web video collection 4 221

Rabbi 720p In Dual Audio Hindi

Resonant Power Converters Kazimierczuk Pdf

samsung s5222 facebook chat download