Publications
†: Undergraduate student; *: Equal contribution
PUBLISHED:
16. A. D. Sproson, Y. Yokoyama, Y. Miyairi, T. Aze, V. J. Clementi, H. Riechelson, S. C. Bova, Y. Rosenthal, L. B. Childress, Expedition 379T Scientists (2024). Near-synchronous Northern Hemisphere and Patagonian Ice Sheet variation over the last glacial cycle, 17, 450–457, https://doi.org/10.1038/s41561-024-01436-y
15. R. S. Vachula and A. H. Cheung (2023). A meta-analysis of studies attributing significance to solar irradiance. Earth and Space Science, 10, e2022EA002466. https://doi.org/10.1029/2022EA002466
14. A. H. Cheung, S. Sandwick†, J. Abella-Gutierrez, X. Du, T. D. Herbert, B. Fox-Kemper, J. C. Herguera. Middle to Late Holocene sea surface temperature and productivity changes in the northeast Pacific. Paleoceanography and Paleoclimatology, 37(11), e2021PA004399, https://doi.org/10.1029/2021PA004399.
13. V. J. Clementi, Y. Rosenthal, S. C. Bova, E. K. Thomas, J. D. Wright, R. A. Mortlock, O. C. Cowling, L. V. Godfrey, L. B. Childress, and Expedition 379T Scientists (2022). Deep submarine infiltration of altered geothermal groundwater on the south Chilean Margin. Communications Earth & Environment, 3, 218 https://doi.org/10.1038/s43247-022-00541-3
12. R. V. Vachula, R. Y. Sheppard, and A. H. Cheung. Preservation biases are pervasive in Holocene paleofire records (2022). Palaeogeography, Palaeoclimatology, Palaeoecology, 111165. https://doi.org/10.1016/j.palaeo.2022.111165
11. C. Li, V. J. Clementi, S. C. Bova, Y. Rosenthal, L. B Childress, J. Wright, Z. Jian, and Expedition 379T Scientists (2022). The sediment green-blue color ratio as a proxy for biogenic silica productivity along the Chilean margin. Geochemistry, Geophysics, Geosystems, 23, e2022GC010350. https://doi.org/10.1029/2022GC010350
10. D. M. Thompson, M. McCulloch, J. E. Cole, E. V. Reed, J. D’Olivo, K. Dyez, M. Lofverstrom, A. W. Tudhope, J. Lough, N. Cantin, A. H. Cheung, L. Vetter, R. L. Edwards. Marginal reefs under stress: physiological limits render Galápagos corals susceptible to ocean acidification and thermal stress (2022). AGU Advances, 3, e2021AV000509. https://doi.org/10.1029/2021AV000509
9. A. H. Cheung, J. E. Cole, D. M. Thompson, L. Vetter, E. V. Reed, G. Jimenez, A. W. Tudhope. Fidelity of the coral Sr/Ca paleothermometer following heat stress in the northern Galápagos (2021). Paleoceanography and Paleoclimatology, 36, e2021PA004323. https://doi.org/10.1029/2021PA004323
8. E. V. Reed, D. M. Thompson, J. E. Cole, J. M. Lough, N. E. Cantin, A. H. Cheung, A. W. Tudhope, L. Vetter, G. Jimenez, and R. Lawrence Edwards (2021). Impacts of Coral Growth on Geochemistry: Lessons from the Galápagos Islands. Paleoceanograhy and Paleoclimatology, 36, e2020PA004051, doi: https://doi.org/10.1029/2020PA004051
7. R. S. Vachula, A. H. Cheung (2021), Late Neogene surge in sedimentary charcoal fluxes partly due to preservation biases, not fire activity. Palaeogeography, Palaeoclimatology, Palaeoecology, 567:110273. doi: https://doi.org/10.1016/j.palaeo.2021.110273.
6. A. H. Cheung*, R. S. Vachula*, E. Clifton†, S. Sandwick†, and J. M. Russell (2021). Humans dominate biomass burning variability in Equatorial Asia over the past 200 years: evidence from a lake sediment charcoal record. Quat. Sci. Rev., doi: https://doi.org/10.1016/j.quascirev.2020.106778
5. O'Mara, N., A. H. Cheung, C. S. Kelly, S. Sandwick†, T. D. Herbert, J. M. Russell, J. L. Abella-Gutierrez, S. G. Dee, P. Swarzenski, and J. C. Herguera (2019), Subtropical Pacific Ocean Temperatures over the Common Era: the Pacific Decadal Oscillation and its connections with western North American megadroughts, Geophy. Res. Lett. doi: https://doi.org/10.1029/2019GL084828
4. A. H. Cheung, B. Fox-Kemper, and T. D. Herbert (2019), Can we use sea surface temperature and productivity proxy records to reconstruct Ekman upwelling?, Clim. Past, 15, 1985–1998, https://doi.org/10.5194/cp-15-1985-2019.
3. A. H. Cheung, M. E. Mann, B. A. Steinman, L. M. Frankcombe, M. H. England, and S. K. Miller (2017), Reply to comment on "Comparison of low-frequency internal climate variability in CMIP5 models and observation", J. Climate, 30 (23), 9773-9782.
2. A. H. Cheung, M. E. Mann, B. A. Steinman, L. M. Frankcombe, M. H. England, and S. K. Miller (2017), Comparison of Low Frequency Internal Climate Variability in CMIP5 Models and Observations, J. Climate, 30 (12), 4763-4776, doi: 10.1175/JCLI-D-16-0712.1
1. Mann, M. E., B. A. Steinman, S. K. Miller, L. M. Frankcombe, M. H. England, and A. H. Cheung (2016), Predictability of the recent slowdown and subsequent recovery of large scale surface warming using statistical methods, Geophys. Res. Lett., 43 (7), 3459-3467, doi:10.1002/2016GL068159
SUBMITTED/IN REVIEW:
A. H. Cheung, X. Du, M. C. Parish, R. S. Vachula, B. Fox-Kemper, and T. D. Herbert. Carbon dioxide and precession influence western North America hydroclimate and Pacific sea surface temperature during the Holocene. in revision.
A. H. Cheung, A. Sane, B. Fox-Kemper. Internally driven and externally forced Pacific decadal variability in the CESM Last Millennium Ensemble. in revision.
A. H. Cheung, J. E. Smerdon, C. Li, and N. J. Steiger. Proxy and Model-Estimated Coupled Megadroughts in the Southwestern Regions of North and South America. in revision.