[51] Pommier, A., M.J. Tauber, K. Selway, D. Heyner, Plugged-in planet: Accessing the interior of the Earth and other terrestrial bodies via electrical properties, Elements, accepted.
[50] Pommier, A., Experimental investigation of Mercury's outer core, Geophysical Research Letters, 52, e2025GL116595, https://doi.org/10.1029/2025GL116595, 2025.
[49] Hamilton, C.W., A.S. McEwen, L. Keszthelyi, L.M. Carter, A.G. Davies, K. de Kleer, K.L. Jessup, X. Jia, J.T. Keane, K. Mandt, F. Nimmo, C. Paranicas, R.S. Park, J.E. Perry, A. Pommier, J. Radebaugh, S.S. Sutton, A. Vorburger, P. Wurz, C. Borlina, A.F. Haapala, D. N. DellaGiustina, B.W. Denevi, S.M. Hörst, S. Kempf, K. K. Khurana, J.J. Likar, A. Masters, O. Mousis, A.T. Polit, A. Bhushan, M. Bland, I. Matsuyama, J. Spencer, Comparing NASA Discovery and New Frontiers Class Mission Concepts for the Io Volcano Observer (IVO), Planetary Science Journal, 6:134, https://doi.org/10.3847/PSJ/adcab0, 2025.
[48] Pommier, A., M.J. Tauber, C. Renggli, C. Davies, A. Wilson, Electrical properties of alkaline earth sulfides and implications for the interior of Mercury, Journal of Geophysical Research - Planets, 130, e2024JE008651, https://doi.org/10.1029/2024JE008651, 2025.
[47] Hao, M., A. Pommier, E. Codillo, M.J. Walter, A. Cross, R. Hrubiak, L. Wagner, A. Thomson, Y. Yang, N. Backhouse, Electrical conductivity and sound velocities of talc under high pressure and high temperature conditions and application to the subducting Cocos Plate, Journal of Geophysical Research - Solid Earth, 129 (11), e2024JB029824, https://doi.org/10.1029/2024JB029824, 2024.
[46] Davies, C.J., A. Pommier, S. Greenwood, A. Wilson, Thermal and magnetic evolution of Mercury with a layered Fe-Si(-S) core, Earth and Planetary Science Letters, 641, 118812, https://doi.org/10.1016/j.epsl.2024.118812, 2024.
[45] Yoshino, T., G. Manthilake, A. Pommier, Probing deep hydrogen using electrical conductivity, Elements (in The invisible ocean: hydrogen in the deep Earth), 20, 247-252, https://doi.org/10.2138/gselements.20.4.247, 2024.
[44] Pommier, A., M.J. Walter, M. Hao, J. Yang, and R. Hrubiak, Acoustic and electrical properties of Fe-Ti oxides and application to the deep lunar mantle, Earth and Planetary Science Letters, 628, 118570, https://doi.org/10.1016/j.epsl.2024.118570, 2024.
[43] Pommier, A., M.J. Tauber, H. Pirotte, G. Cody, A. Steele, E.S. Bullock, B. Charlier, and B.O. Mysen, Experimental investigation of the bonding of sulfur in highly reduced silicate glasses and melts, Geochimica et Cosmochimica Acta, 363, 114-128, https://doi.org/10.1016/j.gca.2023.10.027, 2023.
[42] Tauber, M.J., S. Saxena, H. Ginestet, E. S. Bullock, and A. Pommier, Electrical properties of iron sulfide-bearing dunite under pressure: effect of temperature, composition, and annealing time, American Mineralogist, 108, 2193-2208, https://doi.org/10.2138/am-2023-9054, 2023.
[41] Pirotte, H., C. Cartier, O. Namur, A. Pommier, Y. Zhang, J. Berndt, S. Klemme, B. Charlier, Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions, Icarus, https://doi.org/10.1016/j.icarus.2023.115699, 2023.
[40] Pommier, A., and A. McEwen, Io: a unique world in our solar system, Elements (in Jupiter’s moon Io, Elements Special Volume 18, 6, Eds: A. Pommier and A. McEwen), 368-373, https://doi.org/10.2138/gselements.18.6.368, 2022.
[39] Wilson, A.J., M. Pozzo, D. Alfé, A.M. Walker, S. Greenwood, A. Pommier, and C.J. Davies, Powering Earth's ancient dynamo with silicon precipitation, Geophysical Research Letters, 49, e2022GL100692, https://doi.org/10.1029/2022GL100692, 2022.
[38] Pommier, A., P. Driscoll, Y. Fei, M. J. Walter, Investigating metallic cores using experiments on the physical properties of liquid iron alloys, Frontiers in Earth Science, https://doi.org/10.3389/feart.2022.956971, 2022.
[37] Greenwood, S., C. Davies, A. Pommier, Influence of thermal stratification on the structure and evolution of the Martian core, Geophysical Research Letters, 48, e2021GL095198. https://doi.org/10.1029/2021GL0951982021, 2021.
[36] Saxena, S., A. Pommier, M. J. Tauber, Iron sulfides and anomalous electrical resistivity in cratonic environments, Journal of Geophysical Research - Solid Earth, https://doi.org/10.1029/2021JB022297, 2021.
[35] Naif, S., K. Selway, B.S. Murphy, G. Egbert, A. Pommier, Electrical conductivity of the lithosphere-asthenosphere system, Physics of the Earth and Planetary Interiors, 313, 106661, https://doi.org/10.1016/j.pepi.2021.106661, 2021.
[34] Pommier, A., K. Leinenweber, H. Pirotte, T. Yu, Y. Wang, In situ Electrical and viscosity measurements of Fe-S alloys under pressure using synchrotron X-ray radiography, High-Pressure Research, https://doi.org/10.1080/08957959.2020.1865343, 2020.
[33] Pommier, A., C. Davies, R. Zhang, A joint experimental-modeling investigation of the effect of light elements on dynamos in small planets and moons, Journal of Geophysical Research-Planets, https://doi.org/10.1029/2020JE006492, 2020.
[32] Pommier, A., Experimental investigation of the effect of nickel on the electrical resistivity of Fe-Ni and Fe-Ni-S alloys under pressure, American Mineralogist, 105 (7), 1069-1077, https://doi.org/10.2138/am-2020-7301, 2020.
[31] Pommier, A., K. Leinenweber, T. Tran, Mercury’s thermal evolution controlled by an insulating liquid outermost core?, Earth and Planetary Science Letters, 517, 125-134, https://doi.org/10.1016/j.epsl. 2019.04.022, 2019.
[30] Zhang, Z., T. Qin, A. Pommier, M.M. Hirschmann, Carbon storage in Fe-Ni-S liquids in the deep upper mantle and its relation to diamond and Fe-Ni alloy precipitation, Earth and Planetary Science Letters, 520, 164-174, https://doi.org/10.1016/j.epsl.2019.05.039, 2019.
[29] Pommier, A., Q. Williams, R. L. Evans, I. Pal, Z. Zhang, Electrical investigation of natural lawsonite under temperature in the pressure range 1-10 GPa and application to subduction contexts, Journal of Geophysical Research-Solid Earth, 124, https://doi.org/10.1029/2018JB016899, 2019.
[28] Pommier, A. and J. Roberts, Understanding electrical signals from below Earth’s surface, Eos, 99, https://doi.org/10.1029/2018EO108517, https://eos.org/project-updates/understanding-electrical-signals-from-below-earths-surface, 2018.
[27] Pommier, A., Highlights & Breakthroughs contribution for American Mineralogist "Probing planetary core structure and dynamics using density and sound velocity“, American Mineralogist, invited paper, https://doi.org/10.2138/am-2019-6775, 2018.
[26] Pommier, A., Influence of sulfur on the electrical resistivity of a crystallizing core in small terrestrial bodies, Earth and Planetary Science Letters, 496, 37-46, https://doi.org/10.1016/j.epsl.2018.05.032, 2018.
[25] Pommier, A., and K. Leinenweber, Electrical cell assembly for reproducible conductivity experiments in the multi-anvil, American Mineralogist, 103, 1298-1305, : http://doi.org/10.2138/am-2018-6448, 2018.
[24] Pommier, A., D. L. Kohlstedt, L. Hansen, S. J. Mackwell, M. Tasaka, F. Heidelbach, K. Leinenweber, Transport properties of olivine grain boundaries from electrical conductivity experiments, Contributions to Mineralogy and Petrology, 173:41, https://doi.org/10.1007/s00410-018-1468-z, 2018.
[23] Pommier, A., V. Laurenz, C. Davies, D. Frost, Melting phase relations in the Fe-S and Fe-S-O systems at core conditions in small terrestrial bodies, Icarus, 306, 150-162, https://doi.org/10.1016/j.icarus.2018.01.021, 2018.
[22] Davies, C. and A. Pommier, Iron snow in the Martian core?, Earth and Planetary Science Letters, 481, 189-200, https://doi.org/10.1016/j.epsl.2018.05.032, 2018.
[21] Zhang, Z. and A. Pommier, Electrical investigation of metal-olivine systems and application to the deep interior of Mercury, Journal of Geophysical Research-Planets, 122, https://doi.org/10.1002/2017JE005390, 2017.
[20] Pommier, A. and R.L. Evans, Constraints on fluids in subduction zones from electromagnetic data, Geosphere, 13 (4), https://doi.org/10.1130/GES01473.1, 2017.
[19] Pommier, A., K. Leinenweber, and M. Tasaka, Experimental investigation of the electrical behavior of olivine during partial melting under pressure and application to the Lunar mantle, Earth and Planetary Science Letters, 425, 242-255, http://dx.doi.org/10.1016/j.epsl.2015.05.052, 2015.
[18] Pommier, A., K. Leinenweber, D. Kohlstedt, C. Qi, E. J. Garnero, S. Mackwell, J. Tyburczy, Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system, Nature, 522, 202-206, https://doi.org/10.1038/nature14502, 2015.
[17] Pichavant, M., B. Scaillet, A. Pommier, G. Iacono Marziano, and R. Cioni, Nature and evolution of primitive Vesuvius magmas: an experimental study, Journal of Petrology, 55(11), 2281-2310, https://doi.org/10.1093/petrology/egu057, 2014.
[16] Khan, A., J. A. D. Connolly, A. Pommier, and J. Noir. Geophysical evidence for melt in the deep lunar interior and implications for Lunar evolution, Journal of Geophysical Research-Planets, https://doi.org/10.1002/2014JE004661, 2014.
[15] Pommier, A., Geophysical assessment of fluid storage conditions and migration in subduction zones, Earth Planets and Space, 66:38, 2014.
[14] Pommier, A., and E.J. Garnero, Petrology-based modeling of mantle melt electrical conductivity and joint-interpretation of electromagnetic and seismic results, Journal of Geophysical Research-Solid Earth, https://doi.org/10.1002/2013JB010449, 2014.
[13] Pommier, A., Interpretation of magnetotelluric results using laboratory measurements, invited review paper, Surveys in Geophysics, https://doi.org/10.1007/s10712-013-9226-2, 2014.
[12] Pommier, A., R.L. Evans, K. Key, J. Tyburczy, S. Mackwell and J. Elsenbeck, Prediction of silicate melt viscosity from electrical conductivity: A model and its geophysical implications, G-Cubed, 14, https://doi.org/10.1002/ggge.20103, 2013.
[11] Khan, A., A. Pommier, G. Neumann and K. Mosegaard, The Lunar moho and the internal structure of the Moon: A geophysical perspective, Tectonophysics, https://doi.org/10.1016/j.tecto.2013.02.024, 2013.
[10] Key K., S. Constable, L. Liu and A. Pommier, Electrical image of passive mantle upwelling beneath the northern East Pacific Rise, Nature, 495, 499-502, https://doi.org/10.1038/nature11932, 2013.
[9] Pommier, A., T.L. Grove and B. Charlier, Water storage and early hydrous melting of the Martian mantle, Earth and Planetary Science Letters, 333-334, 272–281, https://doi.org/10.1016/j.epsl.2012.03.030, 2012.
[8] Carporzen L., B. P. Weiss, S. A. Gilder, A. Pommier and R. J. Hart, Lightning remagnetization of the Vredefort impact crater: No evidence for impact-generated magnetic fields, Journal of Geophysical Research-Planets, 117, E01007, https://doi.org/10.1029/2011JE003919, 2012.
[7] Pommier, A. and E. LeTrong, SIGMELTS: A web portal for electrical conductivity calculations in geosciences, Computers and Geosciences, 37, 1450-1459, https://doi.org/10.1016/j.cageo.2011.01.002, 2011.
[6] Caricchi L., A. Pommier, M. Pistone, J. Castro, A. Burgisser and D. Perugini, Strain-induced magma degassing: Insights from simple shear experiments on bubble bearing melts, Bulletin of Volcanology, https://doi.org/10.1007/s00445-011-0471-2, 2011.
[5] Pommier, A., P. Tarits, S. Hautot, M. Pichavant, B. Scaillet and F. Gaillard, A new petrological and geophysical investigation of the present-day plumbing system of Mount Vesuvius, G-Cubed, 11(7), https://doi.org/10.1029/2010GC003059, 2010.
[4] Pommier, A., F. Gaillard, M. Malki and M. Pichavant, Methodological re-evaluation of the electrical conductivity of silicate melts, American Mineralogist, 95, 284–291, https://doi.org/10.2138/am.2010.3314, 2010.
[3] Pommier, A., F. Gaillard, M. Pichavant, Time-dependent changes of electrical conductivity of basaltic melts with redox state, Geochimica et Cosmochimica Acta, 74, https://doi.org/10.1016/j.gca.2009. 12.005, 2010.
[2] Pommier, A., Electrical properties of magmas, PhD thesis, 2009.
[1] Pommier, A., F. Gaillard, M. Pichavant and B. Scaillet, Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure, Journal of Geophysical Research-Solid Earth, 113, B05205, https://doi.org/10.1029/2007JB005269, 2008.
[2] The Mercury Exploration Assessment Group Science Goals, Objectives, and Investigations, MExAG, Version 1.0, 66 pp., https://www.lpi.usra.edu/mexag/documents/Mercury_Science_Goals_090325.pdf, 2025.
[1] de Kleer, K. et al. Tidal heating: lessons from Io and the Jovian system, Final Report for the Keck Institute for Space Studies, https://www.kiss.caltech.edu/final_reports/Tidal_Heating_final_report.pdf, 2019.