The 2nd ANDEA Workshop

Anomaly and Novelty Detection, Explanation and Accommodation

in Conjunction with KDD 2022

The 2nd Workshop on Anomaly and Novelty Detection, Explanation and Accommodation (ANDEA 2022) will be co-located with KDD 2022


  • 28 August, 2022: Slides of some talks are made available at Schedule

  • 11 August, 2022: Our workshop Schedule is out! An exciting line-up of three keynote talks, two Test-of-time Award talks, one Rising Star Award talk, and five oral presentations of accepted papers. Looking forward to seeing you in Washington!

  • 2 August, 2022: Our Test-of-time Award, Rising Star Award and Best Paper Award are announced, check out the awardees

  • 13 July, 2022: List of accepted papers is released. We will have presentations of five interesting papers

  • June 16, 2022: Three exciting keynote talks are confirmed, check out the keynote speakers

  • June 16, 2022: ANDEA 2022 will be a half-day workshop, from 8 am to 12 noon on August 14, 2022

  • April 12, 2022: ANDEA 2022 workshop website is up


Anomalies are referred to as observations or events that are rare or significantly different from the majority of observations we have in hand, while novelties are observations from novel classes that were unseen during learning. Recognition, detection and accommodation to anomalies and novelties are active research areas in multiple communities, including data mining, machine learning, and computer vision. Some of the most relevant well-established research areas include anomaly detection, out-of-distribution example detection, adversarial example recognition and detection, curiosity-driven reinforcement learning, open-set recognition and adaptation. The successful early detection of anomalies and novelties is of great significance across many domains. For example, it may prevent the loss of billions of dollars by its application to fraud detection and anti-money laundering in fintech, save millions of lives through early disease detection, safeguard large-scale computer networks and data centers from malicious attacks by its use in intrusion detection, defend AI systems from adversarial attacks, and equip AI systems with the ability to work safely in open worlds. Specialized techniques have been studied in some of these areas for decades, but recent developments are raising a wide variety of new research questions. First, anomaly detection in deep learning is challenging, because the learned latent representations—while they are sufficient for accurate performance on nominal inputs—often fail to represent anomalies and novelties in a way that allows them to be detected. Second, there is a need to create fundamental theories of novelty that can articulate what anomalies can be detected and how much data and computation is required. Third, detection is only the first step in enabling an AI system to adapt successfully to novelties. AI systems need to be able to characterize the nature of the novelties and then develop both short-term and long-term responses to accommodating them.

This workshop will gather researchers and practitioners from diverse communities and knowledge background to promote the development of fundamental theories, effective algorithms, and novel applications of anomaly and novelty detection, characterization, and adaptation.

Past Events

A repository of past similar events can be found at here.