Publications
Hartel, J.; Banik, A.; Ali, M. Y.; Helm, B.; Strotmann, K.; Faka, V.; Maus, O.; Li, C.; Wiggers, H.; Zeier, W. G. Investigating the Influence of Transition Metal Substitution in Lithium Argyrodites on Structure, Transport, and Solid-State Battery Performance. Chem. Mater. 2024, 36 (21), 10731–10745. https://doi.org/10.1021/acs.chemmater.4c02281
Banik, A.*; Samanta, B.; Helm, B.; Kraft, M. A.; Rudel, Y.; Li, C.; Hansen, M. R.; Lotsch, B. V.; Bette, S.; Zeier. W. G. Exploring Layered Disorder in Lithium-Ion-Conducting Li3Y1–xInxCl6. Inorg. Chem. 2024, 63(19), 8698–8709. doi.org/10.1021/acs.inorgchem.4c00229
Helm, B.; Strotmann, K.; Böger, T.; Samanta, B.; Banik, A.; Lange, M. A.; Li, Y.; Li, C.; Hansen, M. R.; Canepa, P.; Zeier, W. G. Reducing the Defect Formation Energy by Aliovalent Sn(+IV) and Isovalent P(+V) Substitution in Li3SbS4 Promotes Li+ Transport. ACS Appl. Energy Mater. 2024, 7(5), 1735–1747.doi.org/10.1021/acsaem.3c02652
Hartel, J.; Banik, A.; Gerdes, J. M.; Wankmiller, B.; Helm, B.; Li, C.; Kraft, M. A.; Hansen, M. R.; Zeier, W. G. Understanding Lithium-Ion Transport in Selenophosphate-Based Lithium Argyrodites and Their Limitations in Solid-State Batteries. Chem. Mater. 2023, 35 (12), 4798–4809.doi/10.1021/acs.chemmater.3c00658
Chatterjee, А.; Sachat, Е. А.; Banik, A.; Biswas, K.; Castro-Alvarez, A.; Sotomayor Torres, C. M.; Santiso, J.; Chávez-Ángel, E. Improved High Temperature Thermoelectric Properties in Misfit Ca3Co4O9 by Thermal Annealing. Energies (Basel) 2023, 16, 5162.doi.org/10.3390/en16135162
Chatterjee, A.; Banik, A.; El Sachat, A.; Caicedo Roque, J. M.; Padilla-Pantoja, J.; Sotomayor Torres, C. M.; Biswas, K.; Santiso, J.; Chavez-Angel, E. Enhanced Thermoelectric Properties of Misfit Bi2Sr2-xCaxCo2Oy: Isovalent Substitutions and Selective Phonon Scattering. Materials 2023, 16 (4), 1413. doi.org/10.3390/ma16041413
Helm, B.; Gronych, L.-M.; Banik, A.; Lange, M. A.; Li, C.; Zeier, W. G. Investigating the Li+ substructure and ionic transport in Li10GeP2− xSbxS12 (0≤ x≤ 0.25). Phys. Chem. Chem. Phys. 2023, 25, 1169-1176.doi.org/10.1039/D2CP04710A
Pal, S.; Arora, R.; Banik, A.; Glazyrin, K. V.; Muthu, D. V. S.; Biswas, K.; Waghmare, U. V.; Sood, A. K. Pressure-induced topological and structural phase transitions in natural van der Waals heterostructures from the (SnTe)m(Bi2Te3)n homologous family: Raman spectroscopy, x-ray diffraction, and density functional theory. Phys. Rev. B 2022, 106, 134104. doi.org/10.1103/PhysRevB.106.134104
Hogrefe, K.; Minafra, N.; Hanghofer, I.; Banik, A.; Zeier, W. G.; Wilkening, H M. R. Opening diffusion pathways through site disorder: the interplay of local structure and ion dynamics in the solid electrolyte Li6+xP1–xGexS5I as probed by neutron diffraction and NMR. J. Am. Chem. Soc. 2022, 144, 1795–1812. doi.org/10.1021/jacs.1c11571
Banik, A.; Liu, Y.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N.; Mo, Y.; Zeier. W. Can substitutions affect the oxidative stability of lithium argyrodite solid electrolytes? ACS Appl. Energy Mater. 2022, 5, 2045–2053. doi.org/10.1021/acsaem.1c03599
Helm, B.; Schlem, R.; Wankmiller, B.; Banik, A.; Gautam, A.; Ruhl, J.; Li, C.; Hansen, M. R.; Zeier. W. G. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3–xIn1–xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 2021, 33, 4773-4782. doi.org/10.1021/acs.chemmater.1c01348
Schlem, R.; Banik, A.; Ohno, S.; Suard, E.; Zeier. W. G. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6. Chem. Mater. 2021, 33, 327-337. doi.org/10.1021/acs.chemmater.0c04352
Banik, A.; Famprikis, T.; Ghidiu, M.; Ohno, S.; Kraft, M. A.; Zeier. W. G. On the underestimated influence of synthetic conditions in solid ionic conductors. Chem. Sci. 2021, 12, 6238-6263. doi.org/10.1039/D0SC06553F
Schlem, R.; Banik, A.; Eckardt, M.; Zobel, M.; Zeier. W. G.; Na3–xEr1–xZrxCl6—A Halide-based fast sodium-ion conductor with vacancy-driven ionic transport. ACS App. Energy Mater. 2020, 3, 10164-10173. doi.org/10.1021/acsaem.0c01870
Sarkar, D.; Ghosh, T.; Banik, A.; Roychowdhury, S.; Sanyal, D.; Biswas, K. Highly converged valence bands and ultralow lattice thermal conductivity for high‐performance SnTe Thermoelectrics. Angew. Chem., Int. Ed. 2019, 59, 11115-11122. doi.org/10.1002/anie.202003946
Ohno, S.; Banik, A.; Dewald, G. F.; Kraft, M. A.; Krauskopf, T.; Minafra, N.; Till, P.; Weiss, M.; Zeier, W. G. Materials design of ionic conductors for solid state batteries. Prog. Energy 2020, 2, 022001. doi.org/10.1088/2516-1083/ab73dd
Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao‐Horn, Y.; Zobel, M.; Zeier, W. G. Mechanochemical synthesis: a tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Mater. 2020, 10, 1903719. doi.org/10.1002/aenm.201903719
Banik, A.; Biswas, K. A game-changing strategy in SnSe thermoelectrics. Joule 2019, 3, 636-638. doi.org/10.1016/j.joule.2019.03.001
Banik, A.; Ghosh, T.; Arora, R.; Dutta, M.; Pandey, J.; Acharya, S.; Soni, A.; Waghmare, U. V.; Biswas, K. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1−xGexTe. Energy Environ. Sci. 2019, 12, 589-595. doi.org/10.1039/C8EE03162B
Haque, A.; Banik, A.; Varma, R. M.; Sarkar, I.; Biswas, K.; Santra, P. K. Understanding the chemical nature of the buried nanostructures in low thermal conductive Sb-doped SnTe by variable-energy photoelectron spectroscopy. J. Phys. Chem. C 2019, 123, 10272-10279. doi.org/10.1021/acs.jpcc.9b01081
Roychowdhury, S.; Samanta, M.; Banik, A.; Biswas, K. Thermoelectric energy conversion and topological materials based on heavy metal chalcogenides. J. Solid State Chem. 2019, 275, 103-123 (Review article). doi.org/10.1016/j.jssc.2019.04.005
Banik, A.; Roychowdhury, S.; Biswas K. Journey of tin chalcogenides towards high performance thermoelectrics and topological material. Chem. Commun. 2018, 54, 6573-6590 (Feature article). doi.org/10.1039/C8CC02230E
Chandra, S.; Banik, A.; Biswas, K. n-Type ultrathin few-layer nanosheets of Bi doped SnSe: Synthesis and thermoelectric properties. ACS Energy Lett. 2018, 3, 1153-1158. doi.org/10.1021/acsenergylett.8b00399
Pal, P.; Saha, S.; Banik, A.; Sarkar, A.; Biswas, K. All-solid-state mechanochemical synthesis and post-synthetic transformation of inorganic perovskite-type halides. Chem. - Eur. J. 2018, 24, 1811-1815. doi.org/10.1002/chem.201705682
Banik, A.; Biswas, K. Synthetic nanosheets of natural van der Waals heterostructures. Angew. Chem., Int. Ed. 2017, 56, 14561-14566. doi.org/10.1002/anie.201708293
Banik, A.; Shenoy, U. S.; Saha, S.; Waghmare, U. V.; Biswas, K. High power factor and enhanced thermoelectric performance of SnTe-AgInTe2: Synergistic effect of resonance level and valence band convergence. J. Am. Chem. Soc. 2016, 138, 13068-13075. doi.org/10.1021/jacs.6b08382
Saha, S.; Banik, A.; Biswas, K. Few layer nanosheets of n-type SnSe2. Chem. - Eur. J. 2016, 22, 15634-15638. doi.org/10.1002/chem.201604161
Banik, A.; Vishal, B.; Perumal, S.; Datta, R.; Biswas, K. The origin of low thermal conductivity in Sn1-xSbxTe: Phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 2016, 9, 2011-2019. doi.org/10.1039/C6EE00728G
Banik, A.; Aggarwal, L.; Anand, S.; Waghmare, U. V.; Biswas, K.; Sheet, G. Local ferroelectricity in thermoelectric SnTe above room temperature driven by competing phonon instabilities and soft resonant bonding. J. Materiomics 2016, 2, 196-202. doi.org/10.1016/j.jmat.2016.04.001
Banik, A.; Biswas, K. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization. J. Solid State Chem. 2016, 242, 43-49. doi.org/10.1016/j.jssc.2016.02.012
Banik, A.; Shenoy, U. S.; Anand, S.; Waghmare, U. V.; Biswas, K. Mg Alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 2015, 27, 581-587. doi.org/10.1021/cm504112m
Banik, A.; Biswas, K. Low-temperature soft-chemical synthesis and thermoelectric properties of barium-filled p-type skutterudite nanocrystals. Mater. Sci. Semicond. Process 2014, 27, 593-598. doi.org/10.1016/j.mssp.2014.07.052
Banik, A.; Biswas, K. Lead free thermoelectrics: promising performance in p-type SnTe1- xSex system. J. Mater. Chem. A 2014, 2, 9620-9625. doi.org/10.1039/C4TA01333F