V. Bögelein, F. Duzaar, U. Gianazza, N. Liao, and C. Scheven. Hölder Continuity of the Gradient of Solutions to Doubly Non-Linear Parabolic Equations. arXiv:2305.08539
V. Bögelein, F. Duzaar, and G. Treu. Parabolic PDEs with Dynamic Data under a Bounded Slope Condition. arXiv:2504.17556
U. Gianazza, N. Liao, and J. M. Urbano. Improved moduli of continuity for degenerate phase transitions. arXiv:2408.11555
N. Liao. Nonlocal weak Harnack estimates. arXiv:2402.11986
L. Schätzler, C. Scheven, J. Siltakoski, C. Stanko. Existence of variational solutions to doubly nonlinear systems in nondecreasing domains. arXiv:2505.00148
L. Schätzler, C. Scheven, J. Siltakoski, C. Stanko. Existence of variational solutions to doubly nonlinear systems in general noncylindrical domains. arXiv:2506.09617
M. Strunk. Gradient regularity for widely degenerate elliptic partial differential equations. arXiv:2506.11708
G. Akagi, V. Bögelein, A. Marveggio, U. Stefanelli. Weighted Inertia-Dissipation-Energy approach to doubly nonlinear wave equations. J. Funct. Anal. 289 (2025) no. 8, Paper No. 111067.
F. Bäuerlein. Partial gradient regularity for parabolic systems with degenerate diffusion and Hölder continuous coefficients. Nonlinear Anal. 251 (2025), Paper No. 113691, 39 pp.
S. Blatt, P. Reiter, A. Schikorra, and N. Vorderobermeier. Scale-invariant tangent-point energies for knots. J. Eur. Math. Soc. (JEMS) 27 (2025), no. 5, 1929–2035.
V. Bögelein, F. Duzaar, U. Gianazza, and N. Liao. Local boundedness and higher integrability for the sub-critical singular porous medium system. Math. Ann., to appear, arXiv:2501.09486
V. Bögelein, F. Duzaar, N. Liao, G. Molica-Bisci, and R. Servadei. Regularity for the fractional p-Laplace equation. J. Funct. Anal. 289 (2025), no. 9, Paper No. 111078.
V. Bögelein, F. Duzaar, N. Liao, G. Molica-Bisci, and R. Servadei. Gradient regularity for (s,p)-harmonic functions. Calc. Var. Partial Differential Equations, to appear, arXiv:2409.02012
V. Bögelein, F. Duzaar, N. Liao, and K. Moring. Gradient estimates for the fractional p-Poisson equation. J. Math. Pures Appl., to appear, arXiv:2503.05903
W. Kim, K. Moring, and L. Särkiö. Hölder regularity for degenerate parabolic double-phase equations. J. Differential Equations 434 (2025), Paper No. 113231, 34 pp.
N. Liao and M. Weidner. Time-insensitive nonlocal parabolic Harnack estimates. Proc. Lond. Math. Soc. (3) 130 (2025), no. 5, Paper No. e70051.
K. Moring, C. Scheven. On notions of p-parabolic capacity and applications. Potential Anal (2025), DOI:10.1007/s11118-025-10193-5.
K. Moring, C. Scheven. Supercaloric functions for the porous medium equation in the fast diffusion case. Rev. Mat. Iberoam. 41 (2025), no. 2, 509–550.
M. Strunk. Gradient regularity for a class of doubly nonlinear parabolic partial differential equations. NoDEA Nonlinear Differential Equations Appl. 32, (2025) Paper No. 66.
P. Ambrosio and F. Bäuerlein. Gradient bounds for strongly singular or degenerate parabolic systems. J. Differential Equations 401 (2024), 492–549.
F. Bäuerlein. Weak Harnack inequality for doubly non-linear equations of slow diffusion type. J. Math. Anal. Appl. 539 (2024), no. 2, Paper No. 128541, 40 pp.
S. Blatt and M. Raffaelli. Existence of optimal flat ribbons. J. Geom. Anal. 34 (2024), no. 8, Paper No. 250, 14 pp.
V. Bögelein, F. Duzaar, R. Giova, and A. Passarelli di Napoli. Gradient regularity for a class of widely degenerate parabolic systems. SIAM J. Math. Anal. 56 (2024), no.4, 5017–5078.
V. Bögelein, F. Duzaar, N. Liao, G. Molica-Bisci, and R. Servadei. Higher regularity theory for (s,p)-harmonic functions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 35 (2024), no. 2, 311–321.
V. Bögelein and M. Strunk. A comparison principle for doubly nonlinear parabolic partial differential equations. Ann. Mat. Pura Appl. (4) 203 (2024), no. 2, 779–804.
U. Gianazza and N. Liao. Continuity of the temperature in a multi-phase transition problem. Part II. Interfaces Free Bound. 26 (2024), no. 4, 625–674.
N. Liao. Hölder regularity for parabolic fractional p-Laplacian. Calc. Var. Partial Differential Equations 63 (2024), no. 1, Paper No. 22, 34 pp.
N. Liao. Hölder Estimates for the Stefan Problem. SIAM J. Math. Anal. 56 (2024), no. 6, 7989–8010.
N. Liao. On the modulus of continuity of solutions to nonlocal parabolic equations. J. Lond. Math. Soc. (2) 110 (2024), no. 3, Paper No. e12985, 30 pp.
N. Liao. An improved modulus of continuity for the two-phas Stefan problem. Trans. Amer. Math. Soc. 377 (2024), no. 9, 6023–6041.
U. Gianazza and N. Liao. Continuity of the temperature in a multi-phase transition problem. Part II. Interfaces Free Bound. 26 (2024), no. 4, 625–674.
K. Moring and L.Schätzler. Continuity up to the boundary for obstacle problems to porous medium type equations. Nonlinear Anal. 242 (2024), Paper No. 113499, 29 pp.
V. Bögelein, F. Duzaar, R. Giova, and A. Passarelli di Napoli. Higher regularity in congested traffic dynamics. Math. Ann. 385 (2023), no. 3-4, 1823–1878.
V. Bögelein, F. Duzaar, N. Liao, and L. Schätzler. On the Hölder regularity of signed solutions to a doubly nonlinear equation. Part II. Rev. Mat. Iberoam. 39 (2023), no. 3, 1005–1037.
U. Gianazza and N. Liao. Continuity of the temperature in a multi-phase transition problem. Part III. J. Anal. Math. 150 (2023), no. 2, 583–607.
L. Schätzler and J. Siltakoski. The bounded slope condition for parabolic equations with time-dependent integrands. NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 6, Paper No. 76, 34 pp
L. Mons. Higher integrability for anisotropic parabolic systems of p-Laplace type. Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220308, 22 pp.
L. Mons. Higher regularity for minimizers of very degenerate integral functionals. J. Math. Anal. Appl. 518 (2023), no. 2, Paper No. 126717, 54 pp.
S. Blatt. Analyticity for solution of fractional integro-differential equations. Nonlinear Anal. 224 (2022), Paper No. 113071, 12 pp.
S. Blatt, C. Hopper, and N. Vorderobermeier. A minimising movement scheme for the p-elastic energy of curves. J. Evol. Equ. 22 (2022), no. 2, Paper No. 41, 25 pp.
S. Blatt, C. Hopper, and N. Vorderobermeier. A regularized gradient flow for the p-elastic energy. Adv. Nonlinear Anal. 11 (2022), no. 1, 1383–1411.
S. Blatt, A. Ishizeki, and T. Nagasawa. A Möbius invariant discretization of O'Hara's Möbius energy. J. Knot Theory Ramifications 31 (2022), no. 3, Paper No. 2250016, 15 pp.
S. Blatt, P. Reiter, and A. Schikorra. On O'Hara knot energies I: Regularity for critical knots. J. Differential Geom. 121 (2022), no. 3, 385–424.
V. Bögelein, F. Duzaar, N. Liao, and C. Scheven. Boundary regularity for parabolic systems in convex domains. J. Lond. Math. Soc. (2) 105 (2022), no. 3, 1702–1751.
V. Bögelein, F. Duzaar, N. Liao, and C. Scheven. Gradient Hölder regularity for degenerate parabolic systems. Nonlinear Anal. 225 (2022), Paper No. 113119, 61 pp.
V. Bögelein, F. Duzaar, P. Marcellini, and C. Scheven. Boundary regularity for elliptic systems with p,q -growth. J. Math. Pures Appl. (9) 159 (2022), 250–293.
V. Bögelein, F. Duzaar, and C. Scheven. Higher integrability for doubly nonlinear parabolic systems. Partial Differ. Equ. Appl. 3 (2022), no. 6, Paper No. 74, 41 pp.
U. Gianazza and N. Liao. A boundary estimate for singular sub-critical parabolic equations. Int. Math. Res. Not. IMRN (2022), no. 10, 7332–7353.
U. Gianazza and N. Liao. Continuity of the temperature in a multi-phase transition problem. Math. Ann. 384 (2022), no. 1-2, 211–245.
N. Liao. Local continuity of weak solutions to the Stefan problem involving the singular p-Laplacian. SIAM J. Math. Anal. 54 (2022), no. 2, 2570–2586.
N. Liao. On the logarithmic type boundary modulus of continuity for the Stefan problem: to the memory of Emmanuele DiBenedetto. Adv. Math. 408 (2022), Paper No. 108613, 53 pp.
N. Liao and L. Schätzler. On the Hölder regularity of signed solutions to a doubly nonlinear equation. Part III. Int. Math. Res. Not. IMRN (2022), no. 3, 2376–2400.
K. Moring and R. Rainer. Stability for systems of porous medium type. J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 125532, 36 pp.
K. Moring and L.Schätzler. On the Hölder regularity for obstacle problems to porous medium type equations. J. Evol. Equ. 22 (2022), no. 4, Paper No. 81, 46 pp.
D. Steenebrügge and N. Vorderobermeier. On the analyticity of critical points of the generalized integral Menger curvature in the Hilbert case. Nonlinear Anal. 221 (2022), Paper No. 112858, 27 pp.
V. Bögelein, N. Dietrich, and M. Vestberg. Existence of solutions to a diffusive shallow medium equation. J. Evol. Equ. 21 (2021), no. 1, 845–889. Corrigendum.
V. Bögelein, F. Duzaar, and N. Liao. On the Hölder regularity of signed solutions to a doubly nonlinear equation. J. Funct. Anal. 281 (2021), no. 9, Paper No. 109173, 58 pp.
V. Bögelein, A. Heran, L. Schätzler, and T. Singer. Harnack's inequality for doubly nonlinear equations of slow diffusion type. Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 215, 35 pp.
N. Liao. Hölder regularity for porous medium systems. Calc. Var. Partial Differential Equations 60 (2021), no. 4, Paper No. 156, 28 pp.
N. Liao. Regularity of weak supersolutions to elliptic and parabolic equations: lower semicontinuity and pointwise behavior. J. Math. Pures Appl. (9) 147 (2021), 179–204.
N. Liao. Remarks on parabolic De Giorgi classes. Ann. Mat. Pura Appl. (4) 200 (2021), no. 6, 2361–2384.
R. Rainer, J. Siltakoski, T. Stanin. An evolutionary Haar-Rado type theorem. Manuscripta Math. 168 (2022), no. 1-2, 65–88.
L. Schätzler. The obstacle problem for degenerate doubly nonlinear equations of porous medium type. Ann. Mat. Pura Appl. (4) 200 (2021), no. 2, 641–683.
T. Stanin. Global continuity of variational solutions weakening the one-sided bounded slope condition. Forum Math. 33 (2021), no. 5, 1237–1260.
N. Vorderobermeier. On the regularity of critical points for O'Hara's knot energies: from smoothness to analyticity. Commun. Contemp. Math. 23 (2021), no. 8, Paper No. 2050045, 28 pp.
S. Blatt. The gradient flow of the Möbius energy: ε-regularity and consequences. Anal. PDE 13 (2020), no. 3, 901–941.
V. Bögelein, B. Dacorogna, F. Duzaar, P. Marcellini, and C. Scheven. Integral convexity and parabolic systems. SIAM J. Math. Anal. 52 (2020), no. 2, 1489–1525.
V. Bögelein, F. Duzaar, J. Kinnunen, and C. Scheven. Higher integrability for doubly nonlinear parabolic systems. J. Math. Pures Appl. (9) 143 (2020), 31–72.
V. Bögelein, F. Duzaar, and C. Scheven. Higher integrability for the singular porous medium system. J. Reine Angew. Math. 767 (2020), 203–230.
V. Bögelein and T. Stanin. The one-sided bounded slope condition in evolution problems. Ann. Mat. Pura Appl. (4) 199 (2020), no. 2, 573–587.
U. Gianazza and N. Liao. A boundary estimate for degenerate parabolic diffusion equations. Potential Anal. 53 (2020), no. 3, 977–995.
N. Liao, I. Skrypnik, and V. Vespri. Local regularity for an anisotropic elliptic equation. Calc. Var. Partial Differential Equations 59 (2020), no. 4, Paper No. 116, 31 pp.
N. Liao. A unified approach to the Hölder regularity of solutions to degenerate and singular parabolic equations. J. Differential Equations 268 (2020), no. 10, 5704–5750.
L. Schätzler. The obstacle problem for singular doubly nonlinear equations of porous medium type. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no. 3, 503–548.
S. Blatt. A note on singularities in finite time for the L2 gradient flow of the Helfrich functional. J. Evol. Equ. 19 (2019), no. 2, 463–477.
S. Blatt. Curves between Lipschitz and C1 and their relation to geometric knot theory. J. Geom. Anal. 29 (2019), no. 4, 3270–3292.
S. Blatt and N. Vorderobermeier. On the analyticity of critical points of the Möbius energy. Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 16, 28 pp.
V. Bögelein, F. Duzaar, R. Korte, and . Scheven. The higher integrability of weak solutions of porous medium systems. Adv. Nonlinear Anal. 8 (2019), no. 1, 1004–1034.
V. Bögelein, F. Duzaar, L. Schätzler, and C. Scheven. Existence for evolutionary problems with linear growth by stability methods. J. Differential Equations 266 (2019), no. 11, 7709–7748.
V. Bögelein, P. Lehtelä, and S. Sturm. Regularity of weak solutions and supersolutions to the porous medium equation. Nonlinear Anal. 185 (2019), 49–67.
V. Bögelein, F. Duzaar, P. Marcellini, and C. Scheven. A variational approach to doubly nonlinear equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 4, 739–772.
R. Korte, P. Lehtelä, and S. Sturm. Lower semicontinuous obstacles for the porous medium equation. J. Differential Equations 266 (2019), no. 4, 1851–1864.
N. Liao. A sufficient condition for the continuity of solutions to a logarithmic diffusion equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 3, 1161–1184.
L. Schätzler. Existence for evolutionary Neumann problems with linear growth by stability results. Ann. Acad. Sci. Fenn. Math. 44 (2019), no. 2, 1055–1092.
L. Schätzler. Existence for singular doubly nonlinear systems of porous medium type with time dependent boundary values. J. Elliptic Parabol. Equ. 5 (2019), no. 2, 383–421.
S. Blatt. The gradient flow of O'Hara's knot energies. Math. Ann. 370 (2018), no. 3-4, 993–1061.
S. Blatt, P. Reiter, and A. Schikorra. Introduction. New directions in geometric and applied knot theory, 1–7, Partial Differ. Equ. Meas. Theory, De Gruyter, Berlin, 2018.
V. Bögelein, F. Duzaar, P. Marcellini, and C. Scheven. A variational approach to doubly nonlinear equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), no. 4, 739–772.
V. Bögelein, F. Duzaar, P. Marcellini, and C. Scheven. Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229 (2018), no. 2, 503–545.
V. Bögelein, F. Duzaar, C. Scheven, and T. Singer. Existence of variational solutions in noncylindrical domains. SIAM J. Math. Anal. 50 (2018), no. 3, 3007–3057.
S. Sturm. Pointwise estimates via parabolic potentials for a class of doubly nonlinear parabolic equations with measure data. Manuscripta Math. 157 (2018), no. 3-4, 295–322.
S. Blatt. Monotonicity formulas for extrinsic triharmonic maps and the triharmonic Lane-Emden equation. J. Differential Equations 262 (2017), no. 12, 5691–5734.
V. Bögelein, F. Duzaar, and N. Fusco. A quantitative isoperimetric inequality on the sphere. Adv. Calc. Var. 10 (2017), no. 3, 223–265.
V. Bögelein, F. Duzaar, P. Marcellini, and Stefano Signoriello. Parabolic equations and the bounded slope condition. Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 2, 355–379.
V. Bögelein, F. Duzaar, and C. Scheven. The obstacle problem for parabolic minimizers. J. Evol. Equ. 17 (2017), no. 4, 1273–1310.
V. Bögelein, T. Lukkari, and C. Scheven. Hölder regularity for degenerate parabolic obstacle problems. Ark. Mat. 55 (2017), no. 1, 1–39.
V. Bögelein, F. Ragnedda, S. Vernier Piro, and V. Vespri. Moser-Nash kernel estimates for degenerate parabolic equations. J. Funct. Anal. 272 (2017), no. 7, 2956–2986.
L. Schätzler. Existence of variational solutions for time dependent integrands via minimizing movements. Analysis (Berlin) 37 (2017), no. 4, 199–222.
S. Signoriello, and T. Singer. Hölder continuity of parabolic quasi-minimizers. J. Differential Equations 263 (2017), no. 9, 6066–6114.
S. Sturm. Existence of very weak solutions of doubly nonlinear parabolic equations with measure data. Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 931–962.
S. Sturm. Existence of weak solutions of doubly nonlinear parabolic equations. Math. Anal. Appl. 455 (2017), no. 1, 842–863.
S. Blatt, P. Reiter, and A. Schikorra. Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. Trans. Amer. Math. Soc. 368 (2016), no. 9, 6391–6438.
S. Blatt and M. Struwe. Well-posedness of the supercritical Lane-Emden heat flow in Morrey spaces. ESAIM Control Optim. Calc. Var. 22 (2016), no. 4, 1370–1381.
V. Bögelein, F. Duzaar, and U. Gianazza. Sharp boundedness and continuity results for the singular porous medium equation. Israel J. Math. 214 (2016), no. 1, 259–314.
V. Bögelein, F. Duzaar, and C. Scheven. The obstacle problem for the total variation flow. Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 5, 1143–1188.
V. Bögelein, F. Duzaar, and C. Scheven. The total variation flow with time dependent boundary values. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 108, 31 pp.
T. Singer. Existence of weak solutions of parabolic systems with p,q-growth. Manuscripta Math. 151 (2016), no. 1-2, 87–112.
T. Singer. Local boundedness of variational solutions to evolutionary problems with non-standard growth. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Art. 19, 23 pp.
S. Blatt, P. Reiter. Regularity theory for tangent-point energies: the non-degenerate sub-critical case. Adv. Calc. Var. 8 (2015), no. 2, 93–116.
S. Blatt and P. Reiter. Towards a regularity theory for integral Menger curvature. Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 149–181.
S. Blatt and M. Struwe. An analytic framework for the supercritical Lane-Emden equation and its gradient flow. Int. Math. Res. Not. IMRN (2015), no. 9, 2342–2385.
S. Blatt and M. Struwe. Boundary regularity for the supercritical Lane-Emden heat flow. Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2269–2284.
S. Blatt and M. Struwe. Erratum to: Boundary regularity for the supercritical Lane-Emden heat flow. Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2285.
V. Bögelein. Global gradient bounds for the parabolic p-Laplacian system. Proc. Lond. Math. Soc. (3) 111 (2015), no. 3, 633–680.
V. Bögelein. Partial boundary regularity of non-linear parabolic systems in low dimensions. Analysis (Berlin) 35 (2015), no. 1, 1–28.
V. Bögelein, F. Duzaar, and N. Fusco. A sharp quantitative isoperimetric inequality in higher codimension. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 3, 309–362.
V. Bögelein, F. Duzaar, and U. Gianazza. Very weak solutions of singular porous medium equations with measure data. Commun. Pure Appl. Anal. 14 (2015), no. 1, 23–49.
V. Bögelein, F. Duzaar, and P. Marcellini. A time dependent variational approach to image restoration. SIAM J. Imaging Sci. 8 (2015), no. 2, 968–1006.
V. Bögelein, F. Duzaar, P. Marcellini, and S. Signoriello. Nonlocal diffusion equations. J. Math. Anal. Appl. 432 (2015), no. 1, 398–428.
V. Bögelein, F. Duzaar, and C. Scheven. A sharp quantitative isoperimetric inequality in hyperbolic n-space. Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3967–4017.
Verena Bögelein, Frank Duzaar, and Christoph Scheven. Short-time regularity for the H-surface flow. Int. Math. Res. Not. IMRN (2015), no. 12, 3694–3750.
V. Bögelein, T. Lukkari, and C. Scheven. The obstacle problem for the porous medium equation. Math. Ann. 363 (2015), no. 1-2, 455–499.
N. Liao. Existence and nonexistence of solutions to a logarithmic diffusion equation in bounded domains. Manuscripta Math. 147 (2015), no. 1-2, 101–138.
S. Signoriello, T. Singer. Local Calderón-Zygmund estimates for parabolic minimizers. Nonlinear Anal. 125 (2015), 561–581.
T. Singer. Parabolic equations with p,q-growth: the subquadratic case. Q. J. Math. 66 (2015), no. 2, 707–742.
S. Sturm. Pointwise estimates for porous medium type equations with low order terms and measure data. Electron. J. Differential Equations (2015), No. 101, 25 pp.
P. Baroni and V. Bögelein. Calderón-Zygmund estimates for parabolic p(x,t)-Laplacian systems. Rev. Mat. Iberoam. 30 (2014), no. 4, 1355–1386.
S. Blatt and P. Reiter. How nice are critical knots? Regularity theory for knot energies. Journal of Physics: Conference Series, 544, published online, 2014.
S. Blatt and P. Reiter. Modeling repulsive forces on fibres via knot energies. Mol. Based Math. Biol. 2 (2014), no. 1 56-72.
V. Bögelein. Global Calderón-Zygmund theory for nonlinear parabolic systems. Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 555–596.
V. Bögelein, F. Duzaar, and U. Gianazza. Continuity estimates for porous medium type equations with measure data. J. Funct. Anal. 267 (2014), no. 9, 3351–3396.
V. Bögelein, F. Duzaar, and P. Marcellini. Existence of evolutionary variational solutions via the calculus of variations. J. Differential Equations 256 (2014), no. 12, 3912–3942.
V. Bögelein and Q. Li. Very weak solutions of degenerate parabolic systems with non-standard p(x,t)-growth. Nonlinear Anal. 98 (2014), 190–225.