This site is a work in progress.
rm(list=ls()) #clear environment
cat("\014") #clear console
options(scipen=999) #suppress scientific notation
library(openxlsx)
excel_file <- "C:\myexcelfile.xlsx"
data <- xlsx.read(excel_file,"Sheet1")
library(openxlsx)
excel_file <- "C:\myexcelfile.xlsx"
sheet_names <- getSheetNames(excel_file)
data <- lapply(sheet_names, xlsx.read, xlsxFile = excel_file)
data <- do.call(rbind,data)
names(data)[names(data)=="old_variable_name"] <- "new_variable_name"
data$RT[data$RT==9999] <- NA
use aggregate() function
aggregated_data <- aggregate(cbind(),
use subset() function
data2use <- subset(data, RT >= 0 & RT <= 250 & condition %in% c("Go", "Ignore Go"))
library(lmerTest)
RT_model <- lmer(RT ~ condition + ERP_amplitude + (1|subject_id), data = data2use)
anova(RT_model)
library(r2glmm)
r2beta()
library(jtools)
summ()
library(emmeans)
run emmeans
construct grid and contrasts
run emmeans again
library(ggplot2)
library(Rmisc)
use summarySEwithin()
library(openxlsx)
wb <- createWorkbook()
addWorksheet(wb, "sheetname")
writeData(wb, "sheetname", mydataframe, startRow = 1, startCol = 1)
saveWorkbook(wb, "filepath", overwrite = TRUE)
data_folder <- dirname(rstudioapi::getSourceEditorContext()$path)
Print variable names in console without the cell numbers
cat(paste0('"',names(MyDataFrame),'", '))
Convert all columns in dataframe to character
MyDataFrame <- as.data.frame(lapply(MyDataFrame, as.character))
Replace NA with "" in entire dataframe
MyDataFrame[is.na(MyDataFrame)] <- ""
Comparing column names
setdiff(colnames(df1), colnames(df2))
Connecting to MS Access in R
connection_string <- paste0("Driver={Microsoft Access Driver (*.mdb, *.accdb)};DBQ=",WorkingAccessFilepath,";")
conn <- dbConnect(odbc(), .connection_string = connection_string) # connect to access file
Check if row is NA
complete_na_rows <- apply(df, 1, function(x) all(is.na(x))) \
Remove duplicated rows (get unique)
duplicated_rows <- duplicated(data2use[,c("ColName1", "ColName2")]) # specify columns to look at
unique_rows <- data2use[!duplicated_rows,c("ColName1", "ColName2")] # delete duplicate rows
Concatenate strings while ignoring NA
paste(na.omit(c("string1", "string2')), collapse = ", ")
Connecting with local Microsoft Access file:
library(RODBC)
conn <- odbcConnectAccess2008(AccessFilePath)