Citations
1. World Health Organization. 2021. World Malaria Report 2021. World Health Organization. https://apps.who.int/iris/handle/10665/350147.
2. Chaudhury, S., C. F. Ockenhouse, J. A. Regules, S. Dutta, A. Wallqvist, E. Jongert, N. C. Waters, F. Lemiale, and E. Bergmann-Leitner. 2016. The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity. Malaria Journal. 15(1), doi: 10.1186/s12936-016-1348-9, https://dx.doi.org/10.1186/s12936-016-1348-9.
3. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. 2015. The Lancet. 386(9988):31-45, doi: 10.1016/s0140-6736(15)60721-8, https://dx.doi.org/10.1016/s0140-6736(15)60721-8.
4. Tinto, H., W. Otieno, S. Gesase, H. Sorgho, L. Otieno, E. Liheluka, I. Valéa, V. Sing'Oei, A. Malabeja, D. Valia, A. Wangwe, E. Gvozdenovic, Y. Guerra Mendoza, E. Jongert, M. Lievens, F. Roman, L. Schuerman, and J. Lusingu. 2019. Long-term incidence of severe malaria following RTS,S/AS01 vaccination in children and infants in Africa: an open-label 3-year extension study of a phase 3 randomised controlled trial. The Lancet Infectious Diseases. 19(8):821-832, doi: 10.1016/s1473-3099(19)30300-7, https://dx.doi.org/10.1016/s1473-3099(19)30300-7.
5. Olotu, A., G. Fegan, J. Wambua, G. Nyangweso, A. Leach, M. Lievens, D. C. Kaslow, P. Njuguna, K. Marsh, and P. Bejon. 2016. Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children. New England Journal of Medicine. 374(26):2519-2529, doi: 10.1056/nejmoa1515257, https://dx.doi.org/10.1056/nejmoa1515257.
6. Center for Disease Control and Prevention. 2020. Malaria Biology. https://www.cdc.gov/malaria/about/biology/.
7. Ellis, R. D., I. Sagara, O. Doumbo, and Y. Wu. 2010. Blood stage vaccines for Plasmodium falciparum. Human Vaccines. 6(8):627-634, doi: 10.4161/hv.6.8.11446, https://dx.doi.org/10.4161/hv.6.8.11446.
8. Wright, G. J., and J. C. Rayner. 2014. Plasmodium falciparum Erythrocyte Invasion: Combining Function with Immune Evasion. PLoS Pathogens. 10(3):e1003943, doi: 10.1371/journal.ppat.1003943, https://dx.doi.org/10.1371/journal.ppat.1003943.
9. Yap, A., M. F. Azevedo, P. R. Gilson, G. E. Weiss, M. T. O'Neill, D. W. Wilson, B. S. Crabb, and A. F. Cowman. 2014. Conditional expression of apical membrane antigen 1 in P lasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cellular Microbiology. 16(5):642-656, doi: 10.1111/cmi.12287, https://dx.doi.org/10.1111/cmi.12287.
10. Coley, A. M., K. Parisi, R. Masciantonio, J. Hoeck, J. L. Casey, V. J. Murphy, K. S. Harris, A. H. Batchelor, R. F. Anders, and M. Foley. 2006. The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infect Immun. 74(5):2628-2636, doi: 10.1128/IAI.74.5.2628-2636.2006, https://www.ncbi.nlm.nih.gov/pubmed/16622199.
11. Bai, T., M. Becker, A. Gupta, P. Strike, V. J. Murphy, R. F. Anders, and A. H. Batchelor. 2005. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proceedings of the National Academy of Sciences. 102(36):12736-12741, doi: 10.1073/pnas.0501808102, https://dx.doi.org/10.1073/pnas.0501808102.
12. Takala, S. L., D. Coulibaly, M. A. Thera, A. H. Batchelor, M. P. Cummings, A. A. Escalante, A. Ouattara, K. Traore, A. Niangaly, A. A. Djimde, O. K. Doumbo, and C. V. Plowe. 2009. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med. 1(2):2ra5, doi: 10.1126/scitranslmed.3000257, https://www.ncbi.nlm.nih.gov/pubmed/20165550.
13. Fowkes, F. J. I., J. S. Richards, J. A. Simpson, and J. G. Beeson. 2010. The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis. PLoS Medicine. 7(1):e1000218, doi: 10.1371/journal.pmed.1000218, https://dx.doi.org/10.1371/journal.pmed.1000218.
14. Bailey, J. A., A. A. Berry, M. A. Travassos, A. Ouattara, S. Boudova, E. Y. Dotsey, A. Pike, C. G. Jacob, M. Adams, J. C. Tan, R. M. Bannen, J. J. Patel, J. Pablo, R. Nakajima, A. Jasinskas, S. Dutta, S. Takala-Harrison, K. E. Lyke, M. B. Laurens, A. Niangaly, D. Coulibaly, B. Kouriba, O. K. Doumbo, M. A. Thera, P. L. Felgner, and C. V. Plowe. 2020. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Scientific Reports. 10(1), doi: 10.1038/s41598-020-60551-z, https://dx.doi.org/10.1038/s41598-020-60551-z.
15. Sagara, I., A. Dicko, R. D. Ellis, M. P. Fay, S. I. Diawara, M. H. Assadou, M. S. Sissoko, M. Kone, A. I. Diallo, R. Saye, M. A. Guindo, O. Kante, M. B. Niambele, K. Miura, G. E. D. Mullen, M. Pierce, L. B. Martin, A. Dolo, D. A. Diallo, O. K. Doumbo, L. H. Miller, and A. Saul. 2009. A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine. 27(23):3090-3098, doi: 10.1016/j.vaccine.2009.03.014, https://dx.doi.org/10.1016/j.vaccine.2009.03.014.
16. Thera, M. A., O. K. Doumbo, D. Coulibaly, M. B. Laurens, A. Ouattara, A. K. Kone, A. B. Guindo, K. Traore, I. Traore, B. Kouriba, D. A. Diallo, I. Diarra, M. Daou, A. Dolo, Y. Tolo, M. S. Sissoko, A. Niangaly, M. Sissoko, S. Takala-Harrison, K. E. Lyke, Y. Wu, W. C. Blackwelder, O. Godeaux, J. Vekemans, M.-C. Dubois, W. R. Ballou, J. Cohen, D. Thompson, T. Dube, L. Soisson, C. L. Diggs, B. House, D. E. Lanar, S. Dutta, D. G. Heppner, and C. V. Plowe. 2011. A Field Trial to Assess a Blood-Stage Malaria Vaccine. New England Journal of Medicine. 365(11):1004-1013, doi: 10.1056/nejmoa1008115, https://dx.doi.org/10.1056/nejmoa1008115.
17. Bateman, A., M.-J. Martin, S. Orchard, M. Magrane, R. Agivetova, S. Ahmad, E. Alpi, E. H. Bowler-Barnett, R. Britto, B. Bursteinas, H. Bye-A-Jee, R. Coetzee, A. Cukura, A. Da Silva, P. Denny, T. Dogan, T. Ebenezer, J. Fan, L. G. Castro, P. Garmiri, G. Georghiou, L. Gonzales, E. Hatton-Ellis, A. Hussein, A. Ignatchenko, G. Insana, R. Ishtiaq, P. Jokinen, V. Joshi, D. Jyothi, A. Lock, R. Lopez, A. Luciani, J. Luo, Y. Lussi, A. Macdougall, F. Madeira, M. Mahmoudy, M. Menchi, A. Mishra, K. Moulang, A. Nightingale, C. S. Oliveira, S. Pundir, G. Qi, S. Raj, D. Rice, M. R. Lopez, R. Saidi, J. Sampson, T. Sawford, E. Speretta, E. Turner, N. Tyagi, P. Vasudev, V. Volynkin, K. Warner, X. Watkins, R. Zaru, H. Zellner, A. Bridge, S. Poux, N. Redaschi, L. Aimo, G. Argoud-Puy, A. Auchincloss, K. Axelsen, P. Bansal, D. Baratin, M.-C. Blatter, J. Bolleman, E. Boutet, L. Breuza, C. Casals-Casas, E. De Castro, K. C. Echioukh, E. Coudert, B. Cuche, M. Doche, D. Dornevil, A. Estreicher, M. L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant, V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, N. Hyka-Nouspikel, F. Jungo, G. Keller, A. Kerhornou, V. Lara, P. Le Mercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, A. Morgat, T. B. Neto, S. Paesano, I. Pedruzzi, S. Pilbout, L. Pourcel, M. Pozzato, M. Pruess, C. Rivoire, C. Sigrist, K. Sonesson, A. Stutz, S. Sundaram, M. Tognolli, L. Verbregue, C. H. Wu, C. N. Arighi, L. Arminski, C. Chen, Y. Chen, J. S. Garavelli, H. Huang, K. Laiho, P. McGarvey, D. A. Natale, K. Ross, C. R. Vinayaka, Q. Wang, Y. Wang, L.-S. Yeh, J. Zhang, P. Ruch, and D. Teodoro. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research. 49(D1):D480-D489, doi: 10.1093/nar/gkaa1100, https://dx.doi.org/10.1093/nar/gkaa1100.
18. Cock, P. J. A., T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. De Hoon. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 25(11):1422-1423, doi: 10.1093/bioinformatics/btp163, https://dx.doi.org/10.1093/bioinformatics/btp163.
19. Crooks, G. E., G. Hon, J.-M. Chandonia, and S. E. Brenner. 2004. WebLogo: A Sequence Logo Generator: Figure 1. Genome Research. 14(6):1188-1190, doi: 10.1101/gr.849004, https://dx.doi.org/10.1101/gr.849004.
20. Huerta-Cepas, J., F. Serra, and P. Bork. 2016. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution. 33(6):1635-1638, doi: 10.1093/molbev/msw046, https://dx.doi.org/10.1093/molbev/msw046.
21. Broad Institute. https://software.broadinstitute.org/morpheus
22. Sievers, F., A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, and D. G. Higgins. 2011. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7(1):539, doi: 10.1038/msb.2011.75, https://dx.doi.org/10.1038/msb.2011.75.
23. Lim, S. S., W. Yang, B. Krishnarjuna, K. Kannan Sivaraman, I. R. Chandrashekaran, I. Kass, C. A. Macraild, S. M. Devine, C. O. Debono, R. F. Anders, M. J. Scanlon, P. J. Scammells, R. S. Norton, and S. McGowan. 2014. Structure and Dynamics of Apical Membrane Antigen 1 from Plasmodium falciparum FVO. Biochemistry. 53(46):7310-7320, doi: 10.1021/bi5012089, https://dx.doi.org/10.1021/bi5012089.
24. Schrödinger, L. https://pymol.org/
25. Osier, F. H., G. D. Weedall, F. Verra, L. Murungi, K. K. Tetteh, P. Bull, B. W. Faber, E. Remarque, A. Thomas, K. Marsh, and D. J. Conway. 2010. Allelic diversity and naturally acquired allele-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 in Kenya. Infect Immun. 78(11):4625-4633, doi: 10.1128/IAI.00576-10, https://www.ncbi.nlm.nih.gov/pubmed/20732997.
26. Drew, D. R., A. N. Hodder, D. W. Wilson, M. Foley, I. Mueller, P. M. Siba, A. E. Dent, A. F. Cowman, and J. G. Beeson. 2012. Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria. PLoS ONE. 7(12):e51023, doi: 10.1371/journal.pone.0051023, https://dx.doi.org/10.1371/journal.pone.0051023.
27. Yang, O. O., A. Ali, N. Kasahara, E. Faure-Kumar, J. Y. Bae, L. J. Picker, and H. Park. 2015. Short Conserved Sequences of HIV-1 Are Highly Immunogenic and Shift Immunodominance. Journal of Virology. 89(2):1195-1204, doi: 10.1128/jvi.02370-14, https://dx.doi.org/10.1128/jvi.02370-14.
28. Shah, P., G. A. Canziani, E. P. Carter, and I. Chaiken. 2021. The Case for S2: The Potential Benefits of the S2 Subunit of the SARS-CoV-2 Spike Protein as an Immunogen in Fighting the COVID-19 Pandemic. Front Immunol. 12:637651, doi: 10.3389/fimmu.2021.637651, https://www.ncbi.nlm.nih.gov/pubmed/33767706.