Click here to download the program, with titles and abstracts of the talks.
At the end of the workshop there will be a drinks party offered to the every partecipant.
Ogni curva razionale liscia di grado d è la proiezione della d-immersione di Veronese di P^1 = P(U) da un opportuno spazio P(T); T può essere considerato come un sottospazio vettoriale di S^d(U). Il metodo in questione si basa sulle proprietà di T rispetto ad alcuni operatori GL(U)-invarianti. Nella conferenza verrà brevemente illustrato tale metodo e alcune sue applicazioni (curve monomiali, spazi dei moduli, algoritmi combinatori, ecc.) nonché possibili generalizzazioni alle varietà razionali.
I risultati sono contenuti in una serie di lavori svolti in collaborazione con R. Re ed A. Tortora per le applicazioni combinatorie.
The Calabi--Yau varieties are a special class of varieties with trivial canonical bundle. They are interesting both in algebraic geometry, because of the absence of a canonical model, and in physics, as they are crucial in the study of the mirror symmetry and the string theory.
A way to construct Calabi-Yau varieties is to apply the so called Borcea-Voisin construction, which produces a Calabi--Yau variety $X$ of dimension $n=n_1+n_2$ starting from two Calabi--Yau varieties $Y_1$ and $Y_2$ of dimension $n_1$ and $n_2$ respectively.
The aim of this talk is to illustrate the Bocea--Voisin construction and to apply it to specific choices of Calabi-Yau surfaces $S_1$ and $S_2$. This allows to construct Calabi--Yau 4-folds $X$ which admit several fibrations; in particular $X$ admits at least one fibration whose general fibers are $m$-dimensional Calabi--Yau varieties for any $m$ lower than 4. One of the fibration in curves, which is an elliptic fibration, has fibers of type I_5 on a del Pezzo surface which is contained in the basis of the fibration. This property seems interesting for the F-theory.
This is a joint work with A. Cattaneo and M. Penegini.
La supergeometria è lo studio di varietà caratterizzate da fasci di algebre Z_2-graduate i cui elementi pari commutano ed i cui elementi dispari anticommutano. Nella prima parte del talk verranno introdotte le premesse matematiche e le motivazioni fisiche che hanno condotto all’introduzione di questo tipo di geometrie. Nella seconda parte verranno presentati alcuni risultati recenti relativamente a supervarietà di Calabi-Yau su P^2 “non-projected”, la cui geometria, cioè, non può essere ricostruita a partire dall’ordinaria varietà sottostante. In particolare, verranno indagate questioni relative all’immersione di questa classe di supervarietà: si mostrerà che, sebbene tali varietà non ammettano immersioni in super spazi proiettivi - non sono cioè, superproiettive -, esse possono sempre essere immerse in super Grassmanniane.
In this talk I present a characterization for the birationality of the $5$--canonical map of a minimal algebraic threefold of general type with $p_g \geq 3$. Our result is an analogue of the characterization of the pluricanonical maps for surfaces of general type due to Bombieri. Moreover I will discuss similar results for threefolds of general type with p_g = 1 and 2. This is a jointwork with Meng Chen and Yong Hu.
In this talk I will explain how to construct Calabi--Yau manifolds starting from irreducible holomorphic symplectic manifolds endowed with non-symplectic automorphisms of prime order. Then I will restrict to dimension four and describe the geometry of the Calabi--Yau fourfolds obtained as resolutions of quotients of fourfolds of K3^[2]-type by a non-symplectic involution, and finally use this to construct projective models of some fourfolds of K3^[2]-type.
This is joint work with Alice Garbagnati and Giovanni Mongardi.
I will present some results obtained in collaboration with E. Colombo, A. Ghigi and M. Penegini on Shimura subvarieties of A_g generically contained in the Prym locus. I will explain the construction of 1-dimensional families of double covers compatible with a fixed group action on the base curve C such that the quotient of C by the group is the projective line. I will give a simple criterion for the image of these families under the Prym map to be a Shimura curve. I will show that this criterion allows us to construct several examples of Shimura curves generically contained in the Prym locus in A_g for g < 13.