Research
Research interests
Stochastic filtering, optimal control problems under full and partial observation, and their applications to economics and finance.
Hamilton-Jacobi-Bellman equations, Backward Stochastic Differential Equations and their applications.
Stochastic processes with discontinuous trajectories, random measures and their applications.
Risk measures, g-expectations and robustness.
Publications & accepted papers
A. Calvia, F. Gozzi, F. Lippi, G. Zanco, A simple planning problem for COVID-19 lockdown: a dynamic programming approach, Econ. Theory, 77:1-2 (2024), pp. 169–196, D.O.I., Open Access.
A. Calvia, G. Cappa, F. Gozzi, E. Priola, HJB equations and stochastic control on half-spaces of Hilbert spaces, J. Optim. Theory Appl., 198 (2023), pp. 710-744, D.O.I., Open Access.
E. Bandini, A. Calvia, K. Colaneri, Stochastic filtering of a pure jump process with predictable jumps and path-dependent local characteristics, Stoch. Proc. Appl., 151 (2022), pp. 396–435, D.O.I.
Preprint version, arXiv:2004.12944.A. Calvia, G. Ferrari, Nonlinear filtering of partially observed systems arising in singular stochastic optimal control. Appl. Math. Optim., 85:25 (2022), D.O.I., Open Access.
A. Calvia, S. Federico, F. Gozzi, State constrained control problems in Banach lattices and applications, SIAM J. Control Optim., 59 (2021), pp. 4481–4510, D.O.I.
Preprint version, arXiv:2009.11268.
A. Calvia, E. Rosazza Gianin, Risk measures and progressive enlargement of filtration: a BSDE approach, SIAM J. Financial Math., 11 (2020), pp. 815-848, D.O.I.
Preprint version, arXiv:1904.13257.
A. Calvia, Stochastic filtering and optimal control of pure jump Markov processes with noise-free partial observation, ESAIM: COCV, 26 (2020) 25, D.O.I.
Preprint version, arXiv:1803.0692.
A. Calvia, Optimal control of continuous-time Markov chains with noise-free observation, SIAM J. Control Optim., 56 (2018), pp. 2000–2035, D.O.I.
Preprint version, arXiv:1707.07202.
Preprints
A. Calvia, S. Federico, G. Ferrari, F. Gozzi, A mean-field model of optimal investment, arXiv:2404.02871.
A. Calvia, F. Gozzi, M. Leocata, G. I. Papayiannis, A. Xepapadeas, A. N. Yannacopoulos, An optimal control problem with state constraints in a spatio-temporal economic growth model on networks, arXiv:2304.11568.
Ongoing projects
Optimal control of Piecewise Deterministic Markov Processes of McKean-Vlasov type, with Dr. Elena Bandini.
Stochastic filtering and singular control under full or partial information, with Prof. Giorgio Ferrari.
Optimal retail energy pricing, with Prof. René Aïd and Prof. Salvatore Federico.
Partial smoothing and applications to optimal control problems, with Prof. Fausto Gozzi, Prof. Federica Masiero, and Prof. Gianmario Tessitore.
Optimal control with unobserved parameters, with Prof. Marco Fuhrman.
Optimal control of measure-valued Piecewise Deterministic Markov Processes and applications, with Prof. Fulvia Confortola, Prof. Andrea Cosso, and Dr. Mattia Martini.
PhD Thesis
Optimal control of pure jump Markov processes with noise-free partial observation.
University of Milano-Bicocca, Dep. of Mathematics and its Applications.
PhD Program in Pure and Applied Mathematics. Thesis defended on 22 February 2018.