■ Gupta, A., Bhat, S., Jagdale, P. R., Chaudhari, B.P., Lidgren, L., Gupta, K. C. and Kumar, A., (2014). An in vivo Evaluation of Three-Dimensional Chitosan-Agarose-Gelatin Cryogel Scaffold for the Repair of Subchondral Cartilage Defect in the Rabbit model. Tissue Engineering A 20(23-24): 3101-11.
■ Palai, T., Kumar, A. and Bhattacharya, P. K., (2015). Kinetics studies and model development for the formation of galacto-oligosaccharides from lactose using synthesized thermo-responsive bioconjugate. Enzyme and Microbial Technology 70: 42-49.
■ Srivastava, G., Das, C. K., Das, A., Singh, S.K., Roy, M., Kim, H., Sethy, S. K., Kumar, A., Sharma, R.K., Singh, S.K., Philip, D. and Das, M., (2014). Seed treatment with iron pyrite (FeS2) nanoparticles increase the production of spinach. RSC Adv., 458495-58504
■ Raina, D. B., Kaul, R., Bangroo, A. and Kumar, A., (2014). Effect of temperature variation on bulk properties of polymeric gels fabricated by different crosslinking methods. RSC Adv. 4, 31855-31873.
■ Mishra, R. and Kumar, A., (2014). Effect of plasma polymerization on physicochemical properties of biocomposite cryogels causing a differential behavior of human osteoblasts. J Colloid Interface Science 431: 139-148.
■ Tulachan, B., Meena, S., Rai, R., Mallick, C., Kusurkar, T., Teotia, A. K., Sethy, N., Bhargava, K., Bhattacharya, S., Kumar, A., Sharma, R. K., Sinha, N., Singh, S. and Das, M., (2014). Electricity from the Silk Cocoon Membrane. Sci Rep 5434.
■ Palai, T., Kumar, A. and Bhattacharya, P. K., (2014). Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme and Microbial Technology 55: 40-49.
■ Shakya, A. K., Kumar, A., Nandakumar, K. S., (2014). Chemical cross-linking abrogates adjuvant potential of natural polymers. RSC Advances 4 13817–13821.
■ Mishra, R. and Kumar, A., (2014). Osteocompatibility and osteoinductive potential of supermacroporous polyvinyl alcohol-TEOS-Agarose-CaCl2 (PTAgC) biocomposite cryogels. J. Material Science: Materials in Medicine 25(5): 1327-37.
■ Shakya, A. K., Holmdahl, R., Nandakumar, K. S. and Kumar, A., (2014). Polymeric cryogels are biocompatible and their biodegradation is independent of oxidative radicals. J Biomed Mater Res A 102(10): 3409-3418.
■ Dwevedi, P., Bhat, P. and Kumar, A., (2014). Study of Different delivery Modes of Chondroitin sulphate Using Microspheres and Cryogel Scaffold for Application in Cartilage Tissue Engineering. Int. Poly Mat and Poly Biomat 63(16) : 859-872.
■ Mishra, R., Goel, S. K., Gupta, K. C. and Kumar, A., (2014). Biocomposite cryogels as tissue engineered biomaterials for regeneration of critical-sized cranial bone defects. Tissue Engineering A 20(3-4): 751-62.
■ Damania, A., Jain, E. and Kumar, A., (2014). Advancements in in vitro hepatic models: Application for Drug Screening and Therapeutics. Hepatology International 8:23–38.
■ Jain, E., Damania, A. and Kumar, A., (2014). Biomaterials for Liver Tissue Engineering. Hepatology International 8(2): 185-197.
■ Mishra, R. and Kumar, A., (2014). Bone Tissue Engineering: Synthetic and Natural Polymers and Composites of. Encyclopedia of Biomedical Materials and Polymeric Biomaterials.
■ Kumar, A. and Vishnoi, T., (2014). Neural Tissue Engineering: Polymers for. Encyclopedia of Biomedical Materials and Polymeric Biomaterials.
■ Sarnowska, A., Jablonska, A., Jurga, M., Dainiak, M., Strojek, L., Drela, K., Wright, K., Tripathi, A., Kumar, A., Jungvid, H. and Lukomska, B.,(2013). Encapsulation of mesenchymal stem cells by bioscaffolds protects cell survival and attenuates neuroinflammatory reaction in injured brain tissue after transplantation. Cell transplantation, 22(1), pp.S67-S82.
■ Reddy, R. M., Srivastava, A. and Kumar, A., (2013). Monosaccharide-Responsive Phenylboronate-Polyol Cell Scaffolds for Cell Sheet and Tissue Engineering Applications. PLoS ONE 22;8(10):e77861.
■ Shakya, A. K., Holmdahl, R., Nandakumar, K. S. and Kumar, A., (2013). Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. Vaccine 31(35) 3519-27.
■ Vishnoi, T. and Kumar, A., (2013). Comparative study of various delivery methods for the supply of alpha-ketoglutarate to the neural cells for tissue engineering. Biomed Res Int.; 294679.
■ Sharma, A., Bhat, S., Vishnoi, T., Nayak, V. and Kumar, A., (2013). Three-Dimensional Supermacroporous Carrageenan-Gelatin Cryogel Matrix for Tissue Engineering Applications. BioMed Res Int.; 478279.
■ Bhat, S. and Kumar, A., (2013). Biomaterials and Bioengineering Tomorrow’s Healthcare.,Biomatter 3:2, e24717.
■ Jain, E. and Kumar, A., (2013). Disposable polymeric cryogel bioreactor for therapeutic protein production. Nature Protocols 8 (5): 821-835.
■ Bhat, S., Lidgren, L. and Kumar, A., (2013). In vitro neo-cartilage formation on three-dimensional cryogel scafolds:potential approach for cartilage regeneration. Macromolecular Bioscience 13(7): 827-37.
■ Shakya, A. K. and Kumar, A., (2013). Atom transfer radical polymerization initiators for development of different polymeric architectures. J of Bioscience and Biotechnology 2(1) 1-11.
■ Tripathi, A., Vishnoi, T., Singh, D. and Kumar, A., (2013). Self-assembled functional polymeric macroporous cryogels for guiding the in-vitro cell adhesion and three-dimensional growth pattern. Macromolecular Bioscience 13(7): 838-50.
■ Gupta, A., Sarkar, J. and Kumar, A., (2013). High throughput analysis and capture of benzo[a]pyrene using supermacroporouspoly(4-vinyl pyridine-co-divinyl benzene) cryogel matrix. J Chromatography A 1278: 16-21.
■ Tripathi, A. and Kumar, A., (2013) Integrated approach of β-glucosidase purification from non-clarified crude homogenate using macroporous cryogel matrix. Separation Science and Technology: 48(16)
■ Sami, H. and Kumar, A., (2013). Tunable hybrid cryogels functionalized with drug delivery system as supermacroporous multifunctional biomaterial scaffolds. J Biomaterial Science: Polymer Edn 24(10)1165-1184.
■ Singh, D., MiZo, S., Kumar, A., (2013). Han, S. S. Three dimensional proliferation of lung cells on macroporous HEMA-alginate-gelatin scaffold for lung tissue engineering. J Biomaterial Science: Polymer Edn 24(11): 1343-1359.
■ Rammohan, A., Tayal, L., Kumar, A.,(2013). Sivakumar, S. and Sharma, A. Fabrication of polymer- modified monodispersemesoporous carbon particles by template-based approach for drug delivery applications. RSC Adv., 3 (6): 2008 – 2016.
■ Vishnoi, T. and Kumar, A., (2013). Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation J Material Science: Materials in Medicine 24(2) 447-59.
■ Choi, S., Singh, D., Kumar, A., Oh, T. H., Cho, Y. W., Han, S. S., (2013). Porous three dimensional PVA/gelating scaffold for biomedical application. Int. J. Poly. Mat. Poly. Biomat. 62: 384-389.
■ Singh, D., Vishnoi, T. and Kumar, A., (2013). Effect of alpha-ketoglutarate on growth and metabolism of cells cultured on three-dimensional cryogel matrix Int J of Biological Sciences 9(5): 521-30.