(Under construction) An introduction to the following works:
The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups...
The properties of electrons in magnetically ordered crystals are of interest both from the viewpoint of realizing novel topological phases, such as magnetic Weyl semimetals, and from the applications perspective of creating energy-efficient memories. A systematic study of symmetry and topology in magnetic materials has been challenging given that there are 1651 magnetic space groups (MSGs). Here, by using an efficient representation of allowed band structures, we obtain a systematic description of several basic properties of free electrons in all MSGs in three dimensions...