Visit This Web URL https://masterytrail.com/product/accredited-expert-level-ibm-dataops-advanced-video-course Lesson 1: Introduction to DataOps

1.1. Definition and Importance of DataOps

1.2. DataOps vs. DevOps

1.3. Key Components of DataOps

1.4. Benefits of Implementing DataOps

1.5. DataOps Maturity Model

1.6. Real-World Examples of DataOps

1.7. Setting Up a DataOps Environment

1.8. Tools and Technologies in DataOps

1.9. DataOps Best Practices

1.10. DataOps Challenges and Solutions


Lesson 2: DataOps Architecture

2.1. Overview of DataOps Architecture

2.2. Data Ingestion Layer

2.3. Data Storage Layer

2.4. Data Processing Layer

2.5. Data Governance Layer

2.6. Data Security Layer

2.7. Data Access Layer

2.8. DataOps Pipeline Design

2.9. Scalability in DataOps Architecture

2.10. Case Studies: Successful DataOps Architectures


Lesson 3: Data Governance in DataOps

3.1. Importance of Data Governance

3.2. Data Quality Management

3.3. Data Lineage and Metadata Management

3.4. Data Privacy and Compliance

3.5. Role-Based Access Control (RBAC)

3.6. Data Governance Frameworks

3.7. Implementing Data Governance Policies

3.8. Data Governance Tools and Technologies

3.9. Data Governance Best Practices

3.10. Data Governance Challenges and Solutions


Lesson 4: Data Integration and Ingestion

4.1. Overview of Data Integration

4.2. Data Ingestion Techniques

4.3. Batch vs. Streaming Data Ingestion

4.4. ETL (Extract, Transform, Load) Processes

4.5. Data Integration Tools and Technologies

4.6. Data Pipeline Orchestration

4.7. Data Integration Best Practices

4.8. Data Integration Challenges and Solutions

4.9. Case Studies: Successful Data Integration Projects

4.10. Hands-On: Building a Data Ingestion Pipeline


Lesson 5: Data Storage and Management

5.1. Overview of Data Storage Solutions

5.2. Relational Databases

5.3. NoSQL Databases

5.4. Data Lakes and Data Warehouses

5.5. Cloud Storage Solutions

5.6. Data Storage Best Practices

5.7. Data Storage Challenges and Solutions

5.8. Data Storage Tools and Technologies

5.9. Case Studies: Effective Data Storage Strategies

5.10. Hands-On: Setting Up a Data Lake


Lesson 6: Data Processing and Transformation

6.1. Overview of Data Processing

6.2. Data Transformation Techniques

6.3. Data Cleaning and Preparation

6.4. Data Enrichment and Augmentation

6.5. Data Processing Tools and Technologies

6.6. Data Processing Best Practices

6.7. Data Processing Challenges and Solutions

6.8. Case Studies: Efficient Data Processing Pipelines

6.9. Hands-On: Building a Data Transformation Pipeline

6.10. Advanced Data Processing Techniques


Lesson 7: DataOps and Machine Learning

7.1. Integrating Machine Learning with DataOps

7.2. DataOps for ML Model Training

7.3. DataOps for ML Model Deployment

7.4. DataOps for ML Model Monitoring

7.5. DataOps Tools for Machine Learning

7.6. DataOps Best Practices for Machine Learning

7.7. DataOps Challenges in Machine Learning

7.8. Case Studies: DataOps in ML Projects

7.9. Hands-On: Implementing DataOps for ML

7.10. Advanced Topics in DataOps and ML


Lesson 8: DataOps and Big Data

8.1. Overview of Big Data in DataOps

8.2. Big Data Ingestion Techniques

8.3. Big Data Storage Solutions

8.4. Big Data Processing Frameworks

8.5. Big Data Tools and Technologies

8.6. Big Data Best Practices in DataOps

8.7. Big Data Challenges and Solutions

8.8. Case Studies: DataOps in Big Data Projects

8.9. Hands-On: Building a Big Data Pipeline

8.10. Advanced Big Data Techniques in DataOps


Lesson 9: DataOps and Cloud Computing

9.1. Overview of Cloud Computing in DataOps

9.2. Cloud Data Storage Solutions

9.3. Cloud Data Processing Services

9.4. Cloud DataOps Tools and Technologies

9.5. Cloud DataOps Best Practices

9.6. Cloud DataOps Challenges and Solutions

9.7. Case Studies: DataOps in Cloud Environments

9.8. Hands-On: Setting Up a Cloud DataOps Pipeline

9.9. Multi-Cloud DataOps Strategies

9.10. Advanced Cloud DataOps Techniques


Lesson 10: DataOps and DevOps

10.1. Integrating DataOps with DevOps

10.2. CI/CD Pipelines for DataOps

10.3. Automating DataOps Workflows

10.4. DataOps and DevOps Tools

10.5. DataOps and DevOps Best Practices

10.6. DataOps and DevOps Challenges and Solutions

10.7. Case Studies: DataOps and DevOps Integration

10.8. Hands-On: Building a CI/CD Pipeline for DataOps

10.9. Advanced DataOps and DevOps Techniques

10.10. DataOps and DevOps in Agile Environments


Lesson 11: DataOps and Data Science

11.1. Overview of DataOps for Data Science

11.2. DataOps for Data Exploration

11.3. DataOps for Data Analysis

11.4. DataOps for Data Visualization

11.5. DataOps Tools for Data Science

11.6. DataOps Best Practices for Data Science

11.7. DataOps Challenges in Data Science

11.8. Case Studies: DataOps in Data Science Projects

11.9. Hands-On: Implementing DataOps for Data Science

11.10. Advanced DataOps Techniques for Data Science


Lesson 12: DataOps and Data Engineering

12.1. Overview of DataOps for Data Engineering

12.2. DataOps for Data Pipeline Design

12.3. DataOps for Data Pipeline Orchestration

12.4. DataOps for Data Quality Management

12.5. DataOps Tools for Data Engineering

12.6. DataOps Best Practices for Data Engineering

12.7. DataOps Challenges in Data Engineering

12.8. Case Studies: DataOps in Data Engineering Projects

12.9. Hands-On: Building a DataOps Pipeline for Data Engineering

12.10. Advanced DataOps Techniques for Data Engineering


Lesson 13: DataOps and Data Security

13.1. Overview of Data Security in DataOps

13.2. Data Encryption Techniques

13.3. Data Masking and Anonymization

13.4. Data Access Controls

13.5. Data Security Tools and Technologies

13.6. Data Security Best Practices in DataOps

13.7. Data Security Challenges and Solutions

13.8. Case Studies: DataOps and Data Security

13.9. Hands-On: Implementing Data Security in DataOps

13.10. Advanced Data Security Techniques in DataOps


Lesson 14: DataOps and Data Compliance

14.1. Overview of Data Compliance in DataOps

14.2. GDPR and DataOps

14.3. CCPA and DataOps

14.4. HIPAA and DataOps

14.5. Data Compliance Tools and Technologies

14.6. Data Compliance Best Practices in DataOps

14.7. Data Compliance Challenges and Solutions

14.8. Case Studies: DataOps and Data Compliance

14.9. Hands-On: Implementing Data Compliance in DataOps

14.10. Advanced Data Compliance Techniques in DataOps


Lesson 15: DataOps and Data Quality

15.1. Overview of Data Quality in DataOps

15.2. Data Profiling Techniques

15.3. Data Validation and Verification

15.4. Data Quality Metrics

15.5. Data Quality Tools and Technologies

15.6. Data Quality Best Practices in DataOps

15.7. Data Quality Challenges and Solutions

15.8. Case Studies: DataOps and Data Quality

15.9. Hands-On: Implementing Data Quality in DataOps

15.10. Advanced Data Quality Techniques in DataOps


Lesson 16: DataOps and Data Lineage

16.1. Overview of Data Lineage in DataOps

16.2. Data Lineage Tracking Techniques

16.3. Data Lineage Visualization

16.4. Data Lineage Tools and Technologies

16.5. Data Lineage Best Practices in DataOps

16.6. Data Lineage Challenges and Solutions

16.7. Case Studies: DataOps and Data Lineage

16.8. Hands-On: Implementing Data Lineage in DataOps

16.9. Advanced Data Lineage Techniques in DataOps

16.10. Data Lineage and Metadata Management


Lesson 17: DataOps and Data Cataloging

17.1. Overview of Data Cataloging in DataOps

17.2. Data Cataloging Techniques

17.3. Data Cataloging Tools and Technologies

17.4. Data Cataloging Best Practices in DataOps

17.5. Data Cataloging Challenges and Solutions

17.6. Case Studies: DataOps and Data Cataloging

17.7. Hands-On: Implementing Data Cataloging in DataOps

17.8. Advanced Data Cataloging Techniques in DataOps

17.9. Data Cataloging and Metadata Management

17.10. Data Cataloging and Data Governance


Lesson 18: DataOps and Data Monitoring

18.1. Overview of Data Monitoring in DataOps

18.2. Data Monitoring Techniques

18.3. Data Monitoring Tools and Technologies

18.4. Data Monitoring Best Practices in DataOps

18.5. Data Monitoring Challenges and Solutions

18.6. Case Studies: DataOps and Data Monitoring

18.7. Hands-On: Implementing Data Monitoring in DataOps

18.8. Advanced Data Monitoring Techniques in DataOps

18.9. Data Monitoring and Alerting

18.10. Data Monitoring and Performance Optimization


Lesson 19: DataOps and Data Observability

19.1. Overview of Data Observability in DataOps

19.2. Data Observability Techniques

19.3. Data Observability Tools and Technologies

19.4. Data Observability Best Practices in DataOps

19.5. Data Observability Challenges and Solutions

19.6. Case Studies: DataOps and Data Observability

19.7. Hands-On: Implementing Data Observability in DataOps

19.8. Advanced Data Observability Techniques in DataOps

19.9. Data Observability and Incident Management

19.10. Data Observability and Performance Monitoring


Lesson 20: DataOps and Data Automation

20.1. Overview of Data Automation in DataOps

20.2. Data Automation Techniques

20.3. Data Automation Tools and Technologies

20.4. Data Automation Best Practices in DataOps

20.5. Data Automation Challenges and Solutions

20.6. Case Studies: DataOps and Data Automation

20.7. Hands-On: Implementing Data Automation in DataOps

20.8. Advanced Data Automation Techniques in DataOps

20.9. Data Automation and Workflow Orchestration

20.10. Data Automation and Continuous Integration


Lesson 21: DataOps and Data Collaboration

21.1. Overview of Data Collaboration in DataOps

21.2. Data Collaboration Techniques

21.3. Data Collaboration Tools and Technologies

21.4. Data Collaboration Best Practices in DataOps

21.5. Data Collaboration Challenges and Solutions

21.6. Case Studies: DataOps and Data Collaboration

21.7. Hands-On: Implementing Data Collaboration in DataOps

21.8. Advanced Data Collaboration Techniques in DataOps

21.9. Data Collaboration and Team Management

21.10. Data Collaboration and Communication


Lesson 22: DataOps and Data Versioning

22.1. Overview of Data Versioning in DataOps

22.2. Data Versioning Techniques

22.3. Data Versioning Tools and Technologies

22.4. Data Versioning Best Practices in DataOps

22.5. Data Versioning Challenges and Solutions

22.6. Case Studies: DataOps and Data Versioning

22.7. Hands-On: Implementing Data Versioning in DataOps

22.8. Advanced Data Versioning Techniques in DataOps

22.9. Data Versioning and Change Management

22.10. Data Versioning and Rollback Strategies


Lesson 23: DataOps and Data Scalability

23.1. Overview of Data Scalability in DataOps

23.2. Data Scalability Techniques

23.3. Data Scalability Tools and Technologies

23.4. Data Scalability Best Practices in DataOps

23.5. Data Scalability Challenges and Solutions

23.6. Case Studies: DataOps and Data Scalability

23.7. Hands-On: Implementing Data Scalability in DataOps

23.8. Advanced Data Scalability Techniques in DataOps

23.9. Data Scalability and Performance Optimization

23.10. Data Scalability and Cost Management


Lesson 24: DataOps and Data Resilience

24.1. Overview of Data Resilience in DataOps

24.2. Data Resilience Techniques

24.3. Data Resilience Tools and Technologies

24.4. Data Resilience Best Practices in DataOps

24.5. Data Resilience Challenges and Solutions

24.6. Case Studies: DataOps and Data Resilience

24.7. Hands-On: Implementing Data Resilience in DataOps

24.8. Advanced Data Resilience Techniques in DataOps

24.9. Data Resilience and Disaster Recovery

24.10. Data Resilience and Fault Tolerance


Lesson 25: DataOps and Data Ethics

25.1. Overview of Data Ethics in DataOps

25.2. Data Ethics Principles

25.3. Data Ethics Frameworks

25.4. Data Ethics Best Practices in DataOps

25.5. Data Ethics Challenges and Solutions

25.6. Case Studies: DataOps and Data Ethics

25.7. Hands-On: Implementing Data Ethics in DataOps

25.8. Advanced Data Ethics Techniques in DataOps

25.9. Data Ethics and Bias Mitigation

25.10. Data Ethics and Transparency


Lesson 26: DataOps and Data Privacy

26.1. Overview of Data Privacy in DataOps

26.2. Data Privacy Techniques

26.3. Data Privacy Tools and Technologies

26.4. Data Privacy Best Practices in DataOps

26.5. Data Privacy Challenges and Solutions

26.6. Case Studies: DataOps and Data Privacy

26.7. Hands-On: Implementing Data Privacy in DataOps

26.8. Advanced Data Privacy Techniques in DataOps

26.9. Data Privacy and Anonymization

26.10. Data Privacy and Compliance


Lesson 27: DataOps and Data Auditing

27.1. Overview of Data Auditing in DataOps

27.2. Data Auditing Techniques

27.3. Data Auditing Tools and Technologies

27.4. Data Auditing Best Practices in DataOps

27.5. Data Auditing Challenges and Solutions

27.6. Case Studies: DataOps and Data Auditing

27.7. Hands-On: Implementing Data Auditing in DataOps

27.8. Advanced Data Auditing Techniques in DataOps

27.9. Data Auditing and Compliance

27.10. Data Auditing and Reporting


Lesson 28: DataOps and Data Visualization

28.1. Overview of Data Visualization in DataOps

28.2. Data Visualization Techniques

28.3. Data Visualization Tools and Technologies

28.4. Data Visualization Best Practices in DataOps

28.5. Data Visualization Challenges and Solutions

28.6. Case Studies: DataOps and Data Visualization

28.7. Hands-On: Implementing Data Visualization in DataOps

28.8. Advanced Data Visualization Techniques in DataOps

28.9. Data Visualization and Dashboards

28.10. Data Visualization and Reporting


Lesson 29: DataOps and Data Storytelling

29.1. Overview of Data Storytelling in DataOps

29.2. Data Storytelling Techniques

29.3. Data Storytelling Tools and Technologies

29.4. Data Storytelling Best Practices in DataOps

29.5. Data Storytelling Challenges and Solutions

29.6. Case Studies: DataOps and Data Storytelling

29.7. Hands-On: Implementing Data Storytelling in DataOps

29.8. Advanced Data Storytelling Techniques in DataOps

29.9. Data Storytelling and Communication

29.10. Data Storytelling and Visualization


Lesson 30: DataOps and Data Democratization

30.1. Overview of Data Democratization in DataOps

30.2. Data Democratization Techniques

30.3. Data Democratization Tools and Technologies

30.4. Data Democratization Best Practices in DataOps

30.5. Data Democratization Challenges and Solutions

30.6. Case Studies: DataOps and Data Democratization

30.7. Hands-On: Implementing Data Democratization in DataOps

30.8. Advanced Data Democratization Techniques in DataOps

30.9. Data Democratization and Accessibility

30.10. Data Democratization and Governance


Lesson 31: DataOps and Data Mesh

31.1. Overview of Data Mesh in DataOps

31.2. Data Mesh Architecture

31.3. Data Mesh Principles

31.4. Data Mesh Tools and Technologies

31.5. Data Mesh Best Practices in DataOps

31.6. Data Mesh Challenges and Solutions

31.7. Case Studies: DataOps and Data Mesh

31.8. Hands-On: Implementing Data Mesh in DataOps

31.9. Advanced Data Mesh Techniques in DataOps

31.10. Data Mesh and Data Governance


Lesson 32: DataOps and Data Fabric

32.1. Overview of Data Fabric in DataOps

32.2. Data Fabric Architecture

32.3. Data Fabric Principles

32.4. Data Fabric Tools and Technologies

32.5. Data Fabric Best Practices in DataOps

32.6. Data Fabric Challenges and Solutions

32.7. Case Studies: DataOps and Data Fabric

32.8. Hands-On: Implementing Data Fabric in DataOps

32.9. Advanced Data Fabric Techniques in DataOps

32.10. Data Fabric and Data Integration


Lesson 33: DataOps and Data Lakehouse

33.1. Overview of Data Lakehouse in DataOps

33.2. Data Lakehouse Architecture

33.3. Data Lakehouse Principles

33.4. Data Lakehouse Tools and Technologies

33.5. Data Lakehouse Best Practices in DataOps

33.6. Data Lakehouse Challenges and Solutions

33.7. Case Studies: DataOps and Data Lakehouse

33.8. Hands-On: Implementing Data Lakehouse in DataOps

33.9. Advanced Data Lakehouse Techniques in DataOps

33.10. Data Lakehouse and Data Governance


Lesson 34: DataOps and Data Warehousing

34.1. Overview of Data Warehousing in DataOps

34.2. Data Warehousing Architecture

34.3. Data Warehousing Principles

34.4. Data Warehousing Tools and Technologies

34.5. Data Warehousing Best Practices in DataOps

34.6. Data Warehousing Challenges and Solutions

34.7. Case Studies: DataOps and Data Warehousing

34.8. Hands-On: Implementing Data Warehousing in DataOps

34.9. Advanced Data Warehousing Techniques in DataOps

34.10. Data Warehousing and Data Integration


Lesson 35: DataOps and Data Marts

35.1. Overview of Data Marts in DataOps

35.2. Data Marts Architecture

35.3. Data Marts Principles

35.4. Data Marts Tools and Technologies

35.5. Data Marts Best Practices in DataOps

35.6. Data Marts Challenges and Solutions

35.7. Case Studies: DataOps and Data Marts

35.8. Hands-On: Implementing Data Marts in DataOps

35.9. Advanced Data Marts Techniques in DataOps

35.10. Data Marts and Data Governance


Lesson 36: DataOps and Data Virtualization

36.1. Overview of Data Virtualization in DataOps

36.2. Data Virtualization Techniques

36.3. Data Virtualization Tools and Technologies

36.4. Data Virtualization Best Practices in DataOps

36.5. Data Virtualization Challenges and Solutions

36.6. Case Studies: DataOps and Data Virtualization

36.7. Hands-On: Implementing Data Virtualization in DataOps

36.8. Advanced Data Virtualization Techniques in DataOps

36.9. Data Virtualization and Data Integration

36.10. Data Virtualization and Performance Optimization


Lesson 37: DataOps and Data Federation

37.1. Overview of Data Federation in DataOps

37.2. Data Federation Techniques

37.3. Data Federation Tools and Technologies

37.4. Data Federation Best Practices in DataOps

37.5. Data Federation Challenges and Solutions

37.6. Case Studies: DataOps and Data Federation

37.7. Hands-On: Implementing Data Federation in DataOps

37.8. Advanced Data Federation Techniques in DataOps

37.9. Data Federation and Data Integration

37.10. Data Federation and Performance Optimization


Lesson 38: DataOps and Data Replication

38.1. Overview of Data Replication in DataOps

38.2. Data Replication Techniques

38.3. Data Replication Tools and Technologies

38.4. Data Replication Best Practices in DataOps

38.5. Data Replication Challenges and Solutions

38.6. Case Studies: DataOps and Data Replication

38.7. Hands-On: Implementing Data Replication in DataOps

38.8. Advanced Data Replication Techniques in DataOps

38.9. Data Replication and Data Synchronization

38.10. Data Replication and Performance Optimization


Lesson 39: DataOps and Data Partitioning

39.1. Overview of Data Partitioning in DataOps

39.2. Data Partitioning Techniques

39.3. Data Partitioning Tools and Technologies

39.4. Data Partitioning Best Practices in DataOps

39.5. Data Partitioning Challenges and Solutions

39.6. Case Studies: DataOps and Data Partitioning

39.7. Hands-On: Implementing Data Partitioning in DataOps

39.8. Advanced Data Partitioning Techniques in DataOps

39.9. Data Partitioning and Performance Optimization

39.10. Data Partitioning and Scalability


Lesson 40: DataOps and Data Archiving

40.1. Overview of Data Archiving in DataOps

40.2. Data Archiving Techniques

40.3. Data Archiving Tools and Technologies

40.4. Data Archiving Best Practices in DataOps

40.5. Data Archiving Challenges and Solutions

40.6. Case Studies: DataOps and Data Archiving

40.7. Hands-On: Implementing Data Archiving in DataOps

40.8. Advanced Data Archiving Techniques in DataOps

40.9. Data Archiving and Compliance

40.10. Data Archiving and Cost ManagementÂ