Visit This Web URL https://masterytrail.com/product/accredited-expert-level-ibm-big-sql-advanced-video-course Lesson 1: Introduction to IBM Big SQL

1.1. Overview of IBM Big SQL

1.2. Key Features and Benefits

1.3. Use Cases and Applications

1.4. Architecture of IBM Big SQL

1.5. Integration with Hadoop Ecosystem

1.6. Setting Up the Environment

1.7. Installation and Configuration

1.8. Basic Commands and Syntax

1.9. Hands-On: First Query

1.10. Troubleshooting Common Issues


Lesson 2: Advanced SQL Concepts in Big SQL

2.1. Complex Joins and Subqueries

2.2. Window Functions

2.3. Common Table Expressions (CTEs)

2.4. Advanced Aggregations

2.5. Pivoting and Unpivoting Data

2.6. User-Defined Functions (UDFs)

2.7. Stored Procedures

2.8. Transaction Management

2.9. Optimizing Query Performance

2.10. Case Studies: Real-World Applications


Lesson 3: Data Management and Administration

3.1. Data Loading Techniques

3.2. Data Export and Import

3.3. Data Partitioning Strategies

3.4. Indexing in Big SQL

3.5. Backup and Recovery

3.6. Security and Access Control

3.7. Monitoring and Logging

3.8. Performance Tuning

3.9. Scalability Considerations

3.10. Best Practices for Data Management


Lesson 4: Integration with Other Big Data Tools

4.1. Integration with Apache Hive

4.2. Working with Apache Spark

4.3. Connecting to Data Lakes

4.4. Using Big SQL with IBM DataStage

4.5. Integration with IBM Watson Studio

4.6. Data Virtualization Techniques

4.7. Real-Time Data Processing

4.8. Streaming Data Integration

4.9. Case Studies: Integration Examples

4.10. Troubleshooting Integration Issues


Lesson 5: Performance Optimization Techniques

5.1. Query Optimization Strategies

5.2. Indexing Best Practices

5.3. Partitioning for Performance

5.4. Caching Mechanisms

5.5. Resource Management

5.6. Parallel Processing

5.7. Memory Management

5.8. Disk I/O Optimization

5.9. Benchmarking and Profiling

5.10. Advanced Tuning Techniques


Lesson 6: Security and Compliance

6.1. Data Encryption Techniques

6.2. Role-Based Access Control (RBAC)

6.3. Auditing and Compliance

6.4. Data Masking and Anonymization

6.5. Secure Data Transmission

6.6. Compliance with GDPR and CCPA

6.7. Incident Response Planning

6.8. Security Best Practices

6.9. Case Studies: Security Implementations

6.10. Regular Security Audits


Lesson 7: Advanced Analytics with Big SQL

7.1. Predictive Analytics

7.2. Machine Learning Integration

7.3. Time Series Analysis

7.4. Sentiment Analysis

7.5. Geospatial Data Analysis

7.6. Text Analytics

7.7. Anomaly Detection

7.8. Clustering and Segmentation

7.9. Real-World Analytics Use Cases

7.10. Visualizing Analytics Results


Lesson 8: Big SQL in Cloud Environments

8.1. Deploying Big SQL on IBM Cloud

8.2. Hybrid Cloud Architectures

8.3. Multi-Cloud Strategies

8.4. Cloud Storage Integration

8.5. Scaling Big SQL in the Cloud

8.6. Cost Management in Cloud Environments

8.7. Cloud Security Considerations

8.8. Disaster Recovery in the Cloud

8.9. Case Studies: Cloud Deployments

8.10. Best Practices for Cloud Migration


Lesson 9: Big SQL for Data Scientists

9.1. Data Preparation Techniques

9.2. Feature Engineering

9.3. Model Training and Evaluation

9.4. Integration with Jupyter Notebooks

9.5. Using Big SQL with Python and R

9.6. Data Visualization Tools

9.7. Collaborative Data Science

9.8. Reproducible Research Practices

9.9. Case Studies: Data Science Projects

9.10. Advanced Data Science Techniques


Lesson 10: Big SQL for Business Intelligence

10.1. Creating Dashboards with Big SQL

10.2. Integration with BI Tools (e.g., Tableau, Power BI)

10.3. Real-Time Reporting

10.4. Ad-Hoc Querying

10.5. Data Warehousing Techniques

10.6. ETL Processes with Big SQL

10.7. Data Governance for BI

10.8. Performance Monitoring for BI

10.9. Case Studies: BI Implementations

10.10. Best Practices for BI with Big SQL


Lesson 11: Big SQL for IoT and Edge Computing

11.1. Integrating IoT Data with Big SQL

11.2. Edge Computing Architectures

11.3. Real-Time Data Ingestion

11.4. Stream Processing with Big SQL

11.5. Data Aggregation and Summarization

11.6. Edge Device Management

11.7. Security for IoT Data

11.8. Case Studies: IoT Implementations

11.9. Best Practices for IoT Data Management

11.10. Future Trends in IoT and Big SQL


Lesson 12: Big SQL for Financial Services

12.1. Risk Management Analytics

12.2. Fraud Detection Techniques

12.3. Compliance Reporting

12.4. Real-Time Transaction Processing

12.5. Customer Segmentation

12.6. Portfolio Optimization

12.7. Data Governance in Financial Services

12.8. Case Studies: Financial Services Implementations

12.9. Best Practices for Financial Data Management

12.10. Future Trends in Financial Services and Big SQL


Lesson 13: Big SQL for Healthcare

13.1. Patient Data Management

13.2. Predictive Health Analytics

13.3. Compliance with HIPAA

13.4. Real-Time Health Monitoring

13.5. Clinical Research Data Analysis

13.6. Data Integration with EHR Systems

13.7. Security for Healthcare Data

13.8. Case Studies: Healthcare Implementations

13.9. Best Practices for Healthcare Data Management

13.10. Future Trends in Healthcare and Big SQL


Lesson 14: Big SQL for Retail and E-commerce

14.1. Customer Behavior Analysis

14.2. Inventory Management

14.3. Personalized Recommendations

14.4. Real-Time Sales Analytics

14.5. Supply Chain Optimization

14.6. Data Integration with CRM Systems

14.7. Security for Retail Data

14.8. Case Studies: Retail Implementations

14.9. Best Practices for Retail Data Management

14.10. Future Trends in Retail and Big SQL


Lesson 15: Big SQL for Telecommunications

15.1. Network Performance Analytics

15.2. Customer Churn Prediction

15.3. Real-Time Network Monitoring

15.4. Data Integration with OSS/BSS Systems

15.5. Fraud Detection in Telecom

15.6. Data Governance in Telecommunications

15.7. Security for Telecom Data

15.8. Case Studies: Telecom Implementations

15.9. Best Practices for Telecom Data Management

15.10. Future Trends in Telecommunications and Big SQL


Lesson 16: Big SQL for Manufacturing

16.1. Predictive Maintenance

16.2. Supply Chain Analytics

16.3. Quality Control Data Analysis

16.4. Real-Time Production Monitoring

16.5. Inventory Optimization

16.6. Data Integration with ERP Systems

16.7. Security for Manufacturing Data

16.8. Case Studies: Manufacturing Implementations

16.9. Best Practices for Manufacturing Data Management

16.10. Future Trends in Manufacturing and Big SQL


Lesson 17: Big SQL for Energy and Utilities

17.1. Energy Consumption Analytics

17.2. Predictive Maintenance for Utilities

17.3. Real-Time Grid Monitoring

17.4. Data Integration with SCADA Systems

17.5. Compliance Reporting for Utilities

17.6. Data Governance in Energy and Utilities

17.7. Security for Energy Data

17.8. Case Studies: Energy Implementations

17.9. Best Practices for Energy Data Management

17.10. Future Trends in Energy and Big SQL


Lesson 18: Big SQL for Government and Public Sector

18.1. Public Data Management

18.2. Compliance and Regulatory Reporting

18.3. Real-Time Public Service Analytics

18.4. Data Integration with Government Systems

18.5. Security for Public Sector Data

18.6. Case Studies: Public Sector Implementations

18.7. Best Practices for Public Sector Data Management

18.8. Future Trends in Government and Big SQL

18.9. Data Governance in Public Sector

18.10. Citizen Engagement Analytics


Lesson 19: Big SQL for Media and Entertainment

19.1. Content Recommendation Systems

19.2. Audience Analytics

19.3. Real-Time Viewership Data

19.4. Data Integration with Media Platforms

19.5. Security for Media Data

19.6. Case Studies: Media Implementations

19.7. Best Practices for Media Data Management

19.8. Future Trends in Media and Big SQL

19.9. Content Monetization Analytics

19.10. Advertising Effectiveness Analysis


Lesson 20: Big SQL for Transportation and Logistics

20.1. Route Optimization Analytics

20.2. Real-Time Fleet Monitoring

20.3. Predictive Maintenance for Vehicles

20.4. Data Integration with Logistics Systems

20.5. Security for Transportation Data

20.6. Case Studies: Transportation Implementations

20.7. Best Practices for Transportation Data Management

20.8. Future Trends in Transportation and Big SQL

20.9. Supply Chain Visibility

20.10. Customer Delivery Analytics


Lesson 21: Advanced Data Modeling in Big SQL

21.1. Star and Snowflake Schemas

21.2. Fact and Dimension Tables

21.3. Slowly Changing Dimensions (SCDs)

21.4. Data Vault Modeling

21.5. Normalization vs. Denormalization

21.6. Data Modeling Best Practices

21.7. Case Studies: Data Modeling Examples

21.8. Performance Considerations in Data Modeling

21.9. Advanced Data Modeling Techniques

21.10. Data Modeling Tools Integration


Lesson 22: Big SQL for Real-Time Analytics

22.1. Streaming Data Architectures

22.2. Real-Time Data Ingestion Techniques

22.3. Real-Time Dashboards and Visualizations

22.4. Event-Driven Processing

22.5. Integration with Apache Kafka

22.6. Real-Time Data Transformation

22.7. Case Studies: Real-Time Analytics Implementations

22.8. Best Practices for Real-Time Analytics

22.9. Performance Tuning for Real-Time Analytics

22.10. Future Trends in Real-Time Analytics


Lesson 23: Big SQL for Machine Learning

23.1. Data Preparation for Machine Learning

23.2. Feature Engineering with Big SQL

23.3. Model Training and Evaluation

23.4. Integration with Machine Learning Frameworks

23.5. Real-Time Model Scoring

23.6. Model Management and Deployment

23.7. Case Studies: Machine Learning Implementations

23.8. Best Practices for Machine Learning with Big SQL

23.9. Performance Considerations for Machine Learning

23.10. Future Trends in Machine Learning and Big SQL


Lesson 24: Big SQL for Natural Language Processing (NLP)

24.1. Text Data Preparation

24.2. Sentiment Analysis with Big SQL

24.3. Topic Modeling

24.4. Named Entity Recognition (NER)

24.5. Integration with NLP Libraries

24.6. Real-Time Text Analytics

24.7. Case Studies: NLP Implementations

24.8. Best Practices for NLP with Big SQL

24.9. Performance Considerations for NLP

24.10. Future Trends in NLP and Big SQL


Lesson 25: Big SQL for Time Series Analysis

25.1. Time Series Data Preparation

25.2. Trend Analysis

25.3. Seasonality Detection

25.4. Forecasting Techniques

25.5. Anomaly Detection in Time Series

25.6. Real-Time Time Series Analytics

25.7. Case Studies: Time Series Analysis Implementations

25.8. Best Practices for Time Series Analysis with Big SQL

25.9. Performance Considerations for Time Series Analysis

25.10. Future Trends in Time Series Analysis and Big SQL


Lesson 26: Big SQL for Geospatial Data Analysis

26.1. Geospatial Data Preparation

26.2. Spatial Joins and Queries

26.3. Geospatial Visualization

26.4. Integration with GIS Tools

26.5. Real-Time Geospatial Analytics

26.6. Case Studies: Geospatial Data Analysis Implementations

26.7. Best Practices for Geospatial Data Analysis with Big SQL

26.8. Performance Considerations for Geospatial Data Analysis

26.9. Future Trends in Geospatial Data Analysis and Big SQL

26.10. Advanced Geospatial Data Modeling


Lesson 27: Big SQL for Data Governance

27.1. Data Quality Management

27.2. Data Lineage and Metadata Management

27.3. Data Cataloging

27.4. Data Policy and Compliance

27.5. Data Stewardship

27.6. Case Studies: Data Governance Implementations

27.7. Best Practices for Data Governance with Big SQL

27.8. Performance Considerations for Data Governance

27.9. Future Trends in Data Governance and Big SQL

27.10. Data Governance Tools Integration


Lesson 28: Big SQL for Data Lake Architectures

28.1. Data Lake Design Principles

28.2. Data Ingestion and Storage

28.3. Data Lake Governance

28.4. Data Lake Security

28.5. Data Lake Performance Optimization

28.6. Case Studies: Data Lake Implementations

28.7. Best Practices for Data Lake Architectures with Big SQL

28.8. Future Trends in Data Lake Architectures and Big SQL

28.9. Data Lake Tools Integration

28.10. Data Lake vs. Data Warehouse


Lesson 29: Big SQL for Multi-Tenant Environments

29.1. Multi-Tenant Architecture Design

29.2. Tenant Isolation Techniques

29.3. Resource Allocation and Management

29.4. Multi-Tenant Security

29.5. Performance Tuning for Multi-Tenant Environments

29.6. Case Studies: Multi-Tenant Implementations

29.7. Best Practices for Multi-Tenant Environments with Big SQL

29.8. Future Trends in Multi-Tenant Environments and Big SQL

29.9. Multi-Tenant Tools Integration

29.10. Scalability Considerations for Multi-Tenant Environments


Lesson 30: Big SQL for Hybrid Cloud Environments

30.1. Hybrid Cloud Architecture Design

30.2. Data Synchronization and Replication

30.3. Hybrid Cloud Security

30.4. Performance Tuning for Hybrid Cloud Environments

30.5. Case Studies: Hybrid Cloud Implementations

30.6. Best Practices for Hybrid Cloud Environments with Big SQL

30.7. Future Trends in Hybrid Cloud Environments and Big SQL

30.8. Hybrid Cloud Tools Integration

30.9. Cost Management in Hybrid Cloud Environments

30.10. Disaster Recovery in Hybrid Cloud Environments


Lesson 31: Big SQL for Data Migration

31.1. Data Migration Strategies

31.2. Data Migration Tools Integration

31.3. Data Validation and Verification

31.4. Performance Considerations for Data Migration

31.5. Case Studies: Data Migration Implementations

31.6. Best Practices for Data Migration with Big SQL

31.7. Future Trends in Data Migration and Big SQL

31.8. Data Migration Security

31.9. Data Migration Governance

31.10. Data Migration vs. Data Integration


Lesson 32: Big SQL for Data Integration

32.1. Data Integration Strategies

32.2. Data Integration Tools Integration

32.3. Data Transformation Techniques

32.4. Performance Considerations for Data Integration

32.5. Case Studies: Data Integration Implementations

32.6. Best Practices for Data Integration with Big SQL

32.7. Future Trends in Data Integration and Big SQL

32.8. Data Integration Security

32.9. Data Integration Governance

32.10. Real-Time Data Integration


Lesson 33: Big SQL for Data Warehousing

33.1. Data Warehouse Design Principles

33.2. Data Warehouse Architecture

33.3. Data Warehouse Performance Optimization

33.4. Data Warehouse Security

33.5. Case Studies: Data Warehouse Implementations

33.6. Best Practices for Data Warehousing with Big SQL

33.7. Future Trends in Data Warehousing and Big SQL

33.8. Data Warehouse Tools Integration

33.9. Data Warehouse vs. Data Lake

33.10. Data Warehouse Governance


Lesson 34: Big SQL for Data Virtualization

34.1. Data Virtualization Concepts

34.2. Data Virtualization Tools Integration

34.3. Data Virtualization Performance Optimization

34.4. Data Virtualization Security

34.5. Case Studies: Data Virtualization Implementations

34.6. Best Practices for Data Virtualization with Big SQL

34.7. Future Trends in Data Virtualization and Big SQL

34.8. Data Virtualization Governance

34.9. Data Virtualization vs. Data Integration

34.10. Real-Time Data Virtualization


Lesson 35: Big SQL for Data Federation

35.1. Data Federation Concepts

35.2. Data Federation Tools Integration

35.3. Data Federation Performance Optimization

35.4. Data Federation Security

35.5. Case Studies: Data Federation Implementations

35.6. Best Practices for Data Federation with Big SQL

35.7. Future Trends in Data Federation and Big SQL

35.8. Data Federation Governance

35.9. Data Federation vs. Data Integration

35.10. Real-Time Data Federation


Lesson 36: Big SQL for Data Quality Management

36.1. Data Quality Metrics

36.2. Data Quality Tools Integration

36.3. Data Quality Performance Optimization

36.4. Data Quality Security

36.5. Case Studies: Data Quality Management Implementations

36.6. Best Practices for Data Quality Management with Big SQL

36.7. Future Trends in Data Quality Management and Big SQL

36.8. Data Quality Governance

36.9. Data Quality vs. Data Governance

36.10. Real-Time Data Quality Management


Lesson 37: Big SQL for Data Lineage

37.1. Data Lineage Concepts

37.2. Data Lineage Tools Integration

37.3. Data Lineage Performance Optimization

37.4. Data Lineage Security

37.5. Case Studies: Data Lineage Implementations

37.6. Best Practices for Data Lineage with Big SQL

37.7. Future Trends in Data Lineage and Big SQL

37.8. Data Lineage Governance

37.9. Data Lineage vs. Data Governance

37.10. Real-Time Data Lineage


Lesson 38: Big SQL for Data Cataloging

38.1. Data Cataloging Concepts

38.2. Data Cataloging Tools Integration

38.3. Data Cataloging Performance Optimization

38.4. Data Cataloging Security

38.5. Case Studies: Data Cataloging Implementations

38.6. Best Practices for Data Cataloging with Big SQL

38.7. Future Trends in Data Cataloging and Big SQL

38.8. Data Cataloging Governance

38.9. Data Cataloging vs. Data Governance

38.10. Real-Time Data Cataloging


Lesson 39: Big SQL for Data Policy and Compliance

39.1. Data Policy Concepts

39.2. Data Policy Tools Integration

39.3. Data Policy Performance Optimization

39.4. Data Policy Security

39.5. Case Studies: Data Policy Implementations

39.6. Best Practices for Data Policy with Big SQL

39.7. Future Trends in Data Policy and Big SQL

39.8. Data Policy Governance

39.9. Data Policy vs. Data Governance

39.10. Real-Time Data Policy Management


Lesson 40: Big SQL for Data Stewardship

40.1. Data Stewardship Concepts

40.2. Data Stewardship Tools Integration

40.3. Data Stewardship Performance Optimization

40.4. Data Stewardship Security

40.5. Case Studies: Data Stewardship Implementations

40.6. Best Practices for Data Stewardship with Big SQL

40.7. Future Trends in Data Stewardship and Big SQL

40.8. Data Stewardship Governance

40.9. Data Stewardship vs. Data Governance

40.10. Real-Time Data Stewardship