This page shows all of defined abbreviations for AAS v1. I am working on v2 and I won't ever update this version.
Tier 1 shows abbreviations from 1,000 to 10^3,003-1.
- k = 1,000
- M = 1,000,000
- B = 1,000,000,000
- T = 1,000,000,000,000
Abbreviation combinations
- 1k = 1,000
- 1k1 = 1,001
- 1k10 = 1,010
- 1k100 = 1,100
- 2k = 2,000
- 2k1 = 2,001
- 3k = 3,000
- 10k = 10,000
- 100k = 100,000
- 1M = 1,000,000
- 1M1 = 1,000,001
- 1M1k = 1,001,000
- 1M1k1 = 1,001,001
- 2M = 2,000,000
- 10M = 10,000,000
- 100M = 100,000,000
- Q = 1,000,000,000,000,000
- Qi = 1,000,000,000,000,000,000
- S = 10^21
- Sp = 10^24
- O = 10^27
- N = 10^30
- D = 10^33
- UD = 10^36
- DD = 10^39
- TD = 10^42
- QD = 10^45
- QiD = 10^48
- SD = 10^51
- SpD = 10^54
- OD = 10^57
- ND = 10^60
- V = 10^63
- UV = 10^66
- DV = 10^69
- TV = 10^72
- QV = 10^75
- QiV = 10^78
- SV = 10^81
- SpV = 10^84
- OV = 10^87
- NV = 10^90
- Tg = 10^93
- UT = 10^96
- DT = 10^99
- TT = 10^102
- QT = 10^105
- QiT = 10^108
- ST = 10^111
- SpT = 10^114
- OT = 10^117
- NT = 10^120
- Qg = 10^123
- UQ = 10^126
- DQ = 10^129
- TQ = 10^132
- QQ = 10^135
- QiQ = 10^138
- SQ = 10^141
- SpQ = 10^144
- OQ = 10^147
- NQ = 10^150
- Qig = 10^153
- UQi = 10^156
- DQi = 10^159
- TQi = 10^162
- QQi = 10^165
- QiQi = 10^168
- SQi = 10^171
- SpQi = 10^174
- OQi = 10^177
- NQi = 10^180
- Sg = 10^183
- US = 10^186
- DS = 10^189
- TS = 10^192
- QS = 10^195
- QiS = 10^198
- SS = 10^201
- SpS = 10^204
- OS = 10^207
- NS = 10^210
- Spg = 10^213
- USp = 10^216
- DSp = 10^219
- TSp = 10^222
- QSp = 10^225
- QiSp = 10^228
- SSp = 10^231
- SpSp = 10^234
- OSp = 10^237
- NSp = 10^240
- Og = 10^243
- UO = 10^246
- DO = 10^249
- TO = 10^252
- QO = 10^255
- QiO = 10^258
- SO = 10^261
- SpO = 10^264
- OO = 10^267
- NO = 10^270
- Ng = 10^273
- UN = 10^276
- DN = 10^279
- TN = 10^282
- QN = 10^285
- QiN = 10^288
- SN = 10^291
- SpN = 10^294
- ON = 10^297
- NN = 10^300
- C = 10^303
- UC = 10^306
- BC = 10^309
- TC = 10^312
- QC = 10^315
- QiC = 10^318
- SC = 10^321
- SpC = 10^324
- OC = 10^327
- NC = 10^330
- DC = 10^333
- UDC = 10^336
- VC = 10^363
- TgC = 10^393
- QgC = 10^423
- QigC = 10^453
- SgC = 10^483
- SpgC = 10^513
- OgC = 10^543
- NgC = 10^573
- bC = 10^603
- UbC = 10^606
- DbC = 10^633
- VbC = 10^663
- Tgn = 10^903
- DTn = 10^933
- Qgn = 10^1203
- DQn = 10^1233
- Qin = 10^1503
- DQin = 10^1533
- Sgn = 10^1803
- DSn = 10^1833
- Spn = 10^2103
- DSpn = 10^2133
- Ogn = 10^2403
- DOn = 10^2433
- Ngn = 10^2703
- DNn = 10^2733
- VNn = 10^2763
- TgNn = 10^2793
- QgNn = 10^2823
- QigNn = 10^2853
- SgNn = 10^2883
- SpgNn = 10^2913
- OgNn = 10^2943
- NgNn = 10^2973
- UNNn = 10^2976
- DNNn = 10^2979
- TNNn = 10^2982
- QNNn = 10^2985
- QiNNn = 10^2988
- SNNn = 10^2991
- SpNNn = 10^2994
- ONNn = 10^2997
- NNNn = 10^3000
Limit of this tier (using this system), is 999NNn999ONn999SpNn999SNn999QiNn...999T999B999M999k999.
Tier 2 shows abbreviations from 10^3,003 to 10^(3*10^3,000+3)-1.
'N_1[N_2]N_3' is (N_1*1000^N_2+N_3)-th tier 1 abbreviation after 'k' in AAS. N_1 and N_3 are smaller abbreviations after k and [N_2] is 2nd tier abbreviation. 'M' in N_3 is replaced with 'U'.
Leave nothing if N_1 = 'k' and 'B' in N_1 is replaced with 'b'.
In this analogous list...
- N-th tier 2 abbreviation = N
So here we go again.
- Mi = 1
- Mc = 2
- Na = 3
- Pc = 4
- Fm = 5
- At = 6
- Zp = 7
- Yc = 8
- Xn = 9
- Dk = 10
- MiDk = 11
- McDk = 12
- NaDk = 13
- PcDk = 14
- FmDk = 15
- AtDk = 16
- ZpDk = 17
- YcDk = 18
- XnDk = 19
- Is = 20
- MiIs = 21
- McIs = 22
- Tc = 30
- Trc = 40
- Pc = 50
- Hc = 60
- Hpc = 70
- Oc = 80
- Nc = 90
- Ht = 100
- MiHt = 101
- DcHt = 110
- IsHt = 120
- DiHt = 200
- TiHt = 300
- TriHt = 400
- PiHt = 500
- HiHt = 600
- HpiHt = 700
- OiHt = 800
- NiHt = 900
- NcNiHt = 990
- XnNcNiHt = 999
The limit of tier 1 abbreviation using tier 2 system is NNNnXnNcNiHtNNNnYcNcNiHtNNNnZpNcNiHtNNNnAtNcNiHtNNNnFmNcNiHt...NNNnPcNNNnNaNNNnMcNNNnMiNNNn.
This was made from -illions sheet. Multiplying tier 2 number by anything is simple.
If F[N_1] is N_1-th tier 2 abbreviation and F[N_2] is N_2-th tier 2 abbreviation, then 'F[N_1]aF[N_2]' is (N_1*N_2)-th tier 2 abbreviation.
In this analogous list...
- N-th tier 3 abbreviation = N
So here we go again.
- Ka = 1
- Mg = 2
- Gi = 3
- Tr = 4
- Pt = 5
- Ec = 6
- Zt = 7
- Yt = 8
- Xo = 9
- Wc = 10
- Wg = 20
- We = 30
- Wr = 40
- Wt = 50
- Wx = 60
- Wp = 70
- Wtt = 80
- Wn = 90
- Xz = 100
- Xi = 200
- Xe = 300
- Xr = 400
- Xt = 500
- Xx = 600
- Xp = 700
- Xtt = 800
- Xn = 900
The limit of tier 2 abbreviation using tier 3 system is XnNcNiHtXnNcNiHtaKaXnNcNiHtaMgXnNcNiHtaGiXnNcNiHtaTr...XnNcNiHtaPtaWnaXnXnNcNiHtaEcaWnaXnXnNcNiHtaZtaWnaXnXnNcNiHtaYtaWnaXnXnNcNiHtaXoaWnaXn.
If F[N_1] is N_1-th tier 3 abbreviation and F[N_2] is N_2-th tier 3 abbreviation, then 'F[N_1]uF[N_2]' is (N_1*N_2)-th tier 3 abbreviation.
I use greek numeral symbols to build this:
- N-th tier 4 abbreviation = N
- Greek numeral which represents to N, without ' = N
If you don't want to translate Greek number to english, use this list below:
- α = 1
- β = 2
- γ = 3
- δ = 4
- ε = 5
- ϛ = 6
- ζ = 7
- η = 8
- θ = 9
- ι = 10
- κ = 20
- λ = 30
- μ = 40
- ν = 50
- ξ = 60
- ο = 70
- π = 80
- ϟ = 90
- ρ = 100
- σ = 200
- τ = 300
- υ = 400
- φ = 500
- χ = 600
- ψ = 700
- ω = 800
- ϡ = 900
The limit of tier 3 abbreviation using tier 4 system is XoaWnaXnaXoaWnaXnuαaXoaWnaXnuβaXoaWnaXnuγaXoaWnaXnuδa...XoaWnaXnuεuϟuϡaXoaWnaXnuϛuϟuϡaXoaWnaXnuζuϟuϡaXoaWnaXnuηuϟuϡaXoaWnaXnuθuϟuϡ.