My Books 📚 (not updated)
Will be available to borrow in the future :)
Will be available to borrow in the future :)
Ahlfors, Lars V. Conformal invariants: Topics in geometric function theory. 1973.
Ahlfors, Lars V. Complex analysis: An introduction of the theory of analytic functions of one complex variable. Second edition, 1966.
Armstrong, Mark Anthony. Basic topology. Corrected reprint of 1979 original, 1983.Â
Arnold, Vladimir I. Ordinary differential equations. Translated from the Russian by Roger Cooke, 2006.Â
Artin, Michael. Algebra. Second edition, 1991.
Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. 1969.
Baouendi, M. Salah; Ebenfelt, Peter; Rothschild, Linda Preiss. Real submanifolds in complex space and their mappings. 1999.Â
Bartle, Robert G.; Sherbert, Donald R. Introduction to real analysis. Fourth edition, 1992.Â
Beardon, Alan F. Iteration of rational functions. Complex analytic dynamical systems. 1991.
Bell, Steven R. The Cauchy transform, potential theory and conformal mapping. Second edition, 2016.
Billingsley, Patrick. Convergence of probability measures. Second edition, 1999.
Boggess, Albert. CR manifolds and the tangential Cauchy-Riemann complex. 1991.Â
Chirka, E. M. Complex analytic sets. Translated from the Russian by R. A. M. Hoksbergen, 1989.Â
Churchill, Ruel V.; Brown, James Ward. Complex variables and applications. Fourth edition. 1984.Â
Conway, John B. Functions of one complex variable. II. 1995.Â
Conway, John B. A course in functional analysis. Second edition, 1990.
Conway, John B. Functions of one complex variable. Second edition. 1978.
D'Angelo, John P. Hermitian analysis. From Fourier series to Cauchy-Riemann geometry. Second edition, 2019.
Dummit, David S.; Foote, Richard M. Abstract algebra. Third edition, 2004.
Durrett, Rick. Probability—theory and examples. Fifth edition, 2019.Â
Evans, Lawrence C. Partial differential equations. Second edition, 2010.
Farkas, H. M.; Kra, I. Riemann surfaces. Second edition, 1992.
Feller, William. An introduction to probability theory and its applications. Vol. I. Third edition, 1968.
Fisher, Stephen D. Function theory on planar domains. A second course in complex analysis. 1983.Â
Forster, Otto. Lectures on Riemann surfaces. Translated by Bruce Gilligan. 1991.Â
Friedberg, Stephen H.; Insel, Arnold J.; Spence, Lawrence E. Linear algebra. Fourth edition, 1979.
Fritzsche, Klaus; Grauert, Hans. From holomorphic functions to complex manifolds. 2002.Â
Gamelin, Theodore W. Complex analysis. 2001.
Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order. 1998.
Greene, Robert E.; Kim, Kang-Tae; Krantz, Steven G. The geometry of complex domains. 2011.Â
Grimmett, Geoffrey R.; Stirzaker, David R. Probability and random processes. Fourth edition, 2020.
Guillemin, Victor; Pollack, Alan. Differential topology. 1974.
Gunning, Robert C.; Rossi, Hugo. Analytic functions of several complex variables. 1965.
Halmos, Paul R. Measure Theory. 1950.Â
Hardy, G. H.; Littlewood, J. E.; Pólya, G. Inequalities. Second edition, 1952.
Hatcher, Allen. Algebraic topology. 2002.Â
Herstein, I. N. Topics in algebra. Second edition, 1975.
Hirsch, Morris W.; Smale, Stephen; Devaney, Robert L. Differential equations, dynamical systems, and an introduction to chaos. Third edition, 2013.
Hoffman, Kenneth; Kunze, Ray. Linear algebra. Second edition, 1971.Â
Horn, Roger A.; Johnson, Charles R. Matrix analysis. Second edition, 2013.
Hörmander, Lars. An introduction to complex analysis in several variables. Third edition, 1990.
Jacobi, C. G. J. Jacobi's lectures on dynamics. Edited by A. Clebsch. Second edition, 2009.
Jarnicki, Marek; Pflug, Peter. Extension of holomorphic functions. Second edition, 2020.
Jarnicki, Marek; Pflug, Peter. First steps in several complex variables: Reinhardt domains. 2008.Â
John, Fritz. Partial differential equations. Fourth edition, 1982.
Jost, Jürgen. Partial differential equations. Third edition. 2013.
Jost, Jürgen. Riemannian geometry and geometric analysis. Fifth edition, 2008.
Jost, Jürgen. Compact Riemann surfaces. An introduction to contemporary mathematics. Third edition, 2006.Â
Katznelson, Yitzhak. An introduction to harmonic analysis. Third edition, 2004.
Kesavan, S. Functional analysis. 2009.
Kesavan, S. Topics in functional analysis and applications. 1989.
Kobayashi, Shoshichi. Differential geometry of curves and surfaces. Translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. 2021.
Komjáth, Péter; Totik, Vilmos. Problems and theorems in classical set theory. 2006.
Körner, T. W. A companion to analysis. A second first and first second course in analysis. 2004.Â
Krantz, Steven G. Geometric analysis of the Bergman kernel and metric. 2013.
Krantz, Steven G. Geometric function theory. Explorations in complex analysis. 2006.
Krantz, Steven G.; Parks, Harold R. The implicit function theorem. History, theory, and applications. 2002.
Krantz, Steven G. Function theory of several complex variables. 1992.Â
Lee, John M. Introduction to Riemannian manifolds. Second edition, 2018.
Linge, Svein; Langtangen, Hans Petter. Programming for computations—Python. A gentle introduction to numerical simulations with Python. 2016.
Milnor, John Dynamics in one complex variable. Third edition, 2006.
Mörters, Peter; Peres Yuval. Brownian motion. With an appendix by Oded Schramm and Wendelin Werner, 2010.
Munkres, James R. Topology. Second edition, 2000.
Nandakumaran, A. K.; Datti, P. S. Partial differential equations—classical theory with a modern touch. 2020.
Nandakumaran, A. K.; Datti, P. S.; George, Raju K. Ordinary differential equations. Principles and applications. 2017.
Narasimhan, Raghavan; Nievergelt, Yves. Complex analysis in one variable. Second edition, 2001.
Narasimhan, Raghavan. Compact Riemann surfaces. 1992.
Needham, Tristan Visual complex analysis. With a foreword by Roger Penrose. 25th-anniversary edition, 2023.Â
Perko, Lawrence. Differential equations and dynamical systems. Third edition, 2001.
Petersen, Peter. Riemannian geometry. Third edition. 2016.
Range, R. Michael. Holomorphic functions and integral representations in several complex variables. 1986.Â
Ransford, Thomas. Potential theory in the complex plane. 1995.
Ross, Kenneth A. Elementary analysis: the theory of calculus. 1980.
Ross, Sheldon M. Introduction to probability models. Eleventh edition, 2014.Â
Royden, H. L. Real analysis. Fourth edition, 2010.
Rudin, Walter. Function theory in the unit ball of C^n. 1980.
Rudin, Walter. Functional analysis. Second edition. 1991.Â
Rudin, Walter. Real and complex analysis. Third edition. 1987.Â
Rudin, Walter. Principles of mathematical analysis. 1953.
Spivak, Michael. A comprehensive introduction to differential geometry. Volumes I to V. Third edition, 1999.
Spivak, Michael. Calculus on manifolds. 1965.
Springer, George. Introduction to Riemann surfaces. 1957.
Stein, Elias M.; Shakarchi, Rami. Fourier analysis. 2003.
Stein, Elias M.; Shakarchi, Rami. Complex analysis. 2003.Â
Stein, Elias M.; Shakarchi, Rami. Real analysis. Measure theory, integration, and Hilbert spaces. 2005.Â
Stein, Elias M.; Shakarchi, Rami. Functional analysis. 2011.Â
Tao, Terence. Analysis I and Analysis II. Third edition, 2014.Â
Tao, Terence. An introduction to measure theory. 2011.
Thangavelu, Sundaram. An introduction to the uncertainty principle. Hardy's theorem on Lie groups. 2004.Â