Given I= ∈1⅄(Q/Θ)cn
The definition of Q variable should be accurate to its defining base path where 1⅄Q and 2⅄Q, differ from prime base just as φ and Θ differ in paths 1⅄ and 2⅄ of Y base.
so
I= ∈1⅄(1⅄Qn2/Θn1)cn
and
I= ∈1⅄(2⅄Qn2/Θn1)cn
then
In1 of 1⅄(1⅄Qn2/Θn1)=(1.^6/0)=0
In2 of 1⅄(1⅄Qn3/Θn2)=(1.4/1)=1.4
In3 of 1⅄(1⅄Qn4/Θn3)=(1.^571428/0.5)=3.142856
In4 of 1⅄(1⅄Qn5/Θn4)=(1.^18/0.^6)=1.9^6 or 1.9666 and so on...
In5 of 1⅄(1⅄Qn6/Θn5)=(1.^307692/0.6)=2.17948^6 or 2.17948666 and so on...
In6 of 1⅄(1⅄Qn7/Θn6)=(1.^1176470588235294/0.625)=1.78823529411764704
In7 of 1⅄(1⅄Qn8/Θn7)=(1.^210526315789473684/0.^615384)=1.9671072302651^250016 or 1.9671072302651250016250016250016 and so on...
if I= ∈1⅄(1⅄Qn2/Θn1)cn
and
I= ∈1⅄(2⅄Qn2/Θn1)cn
then
In1 of 1⅄(2⅄Qn2/Θn1)=(0.6/0)=0
In2 of 1⅄(2⅄Qn3/Θn2)=(0.^714285/1)=0.714285
In3 of 1⅄(2⅄Qn4/Θn3)=(0.^63/0.5)=1.26
In4 of 1⅄(2⅄Qn5/Θn4)=(0.^846153/0.^6)=1.410255
In5 of 1⅄(2⅄Qn6/Θn5)=(0.^7647058823529411/0.6)=1.2745098039215685
In6 of 1⅄(2⅄Qn7/Θn6)=(0.^894736842105263157/0.625)=1.4315789473684210512
In7 of 1⅄(2⅄Qn8/Θn7)=(0.^8260869565217391304347/0.^615384)=1.342392646740472827429^214929 or 1.342392646740472827429214929214929214929 and so on...